Skip to main content

Condensed Matter Physics Numerical Analytics Libirary

Project description

Python Test C++ Test codecov

Description

COndensed Matter Physics Numerical Analytics Library (COMPNAL) is a numerical calculation library in the field of condensed matter physics. This library aims to provide a comprehensive set of numerical methods and algorithms tailored for analyzing various condensed matter systems.

API Reference

C++ Reference

Features

COMPNAL can calculate the following models on the following lattices by the following solvers.

Lattice

  • One-dimensional chain
  • Two-dimensional square lattice
  • Three-dimensional cubic lattice
  • Fully-connected lattice

Model

Classical models

  • Ising model
  • Polynomial Ising model

Solver

For Classical models

  • Classical Monte Carlo method
    • Single spin flip
    • Parallel tempering

Upcoming Features

We are actively working on expanding COMPNAL with the following upcoming features.

Lattice

  • Two-dimensional triangular lattice
  • Two-dimensional honeycomb lattice
  • User-defined lattice

Model

  • Classical model

    • Potts model
  • Quantum model

    • Transverse field Ising model
    • Heisenberg model
    • Hubbard model
    • Kondo Lattice model

Algorithm

  • Classical Monte Carlo method
    • Suwa-Todo algorithm
    • Wolff algorithm
    • Swendsen-Wang algorithm
  • Exact Diagonalization
    • Lanczos method
    • Locally Optimal Block Preconditioned Conjugate Gradient method
  • Density Matrix Renormalization Group

Installation

Install from PyPI

Only for Linux and MacOS.

pip install compnal

Install from GitHub

To install the latest release of compnal from the source, use the following command:

pip install git+https://github.com/K-Suzuki-Jij/compnal.git

Before installation, make sure that the following dependencies are installed.

Build from source

COMPNAL depends on the following libraries.

On MacOS

First, install the dependencies using Homebrew.

brew install cmake libomp

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

On Linux

First, install the dependencies using apt.

sudo apt install cmake

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

compnal-0.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (713.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

compnal-0.0.9-cp312-cp312-macosx_11_0_arm64.whl (798.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

compnal-0.0.9-cp312-cp312-macosx_10_9_x86_64.whl (924.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

compnal-0.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (718.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

compnal-0.0.9-cp311-cp311-macosx_11_0_arm64.whl (801.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

compnal-0.0.9-cp311-cp311-macosx_10_9_x86_64.whl (924.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

compnal-0.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (693.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

compnal-0.0.9-cp310-cp310-macosx_11_0_arm64.whl (776.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

compnal-0.0.9-cp310-cp310-macosx_10_9_x86_64.whl (899.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

compnal-0.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

compnal-0.0.9-cp39-cp39-macosx_11_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

compnal-0.0.9-cp39-cp39-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file compnal-0.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ad3bae6f1440976f96b9466d96266e2b4dc5a000fe94ef18f5555a4ecc9b05d
MD5 aee63b866c918bd4ce883ec0bf709958
BLAKE2b-256 3041cf336a52650318bfb15cd604c287c82babb35a8793ed826cdb2bfc8a40b4

See more details on using hashes here.

File details

Details for the file compnal-0.0.9-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.9-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f61f652f91c2b47e719dea7c5d0fc024396a42828515aec1eee5a44628a26ef1
MD5 f8dd15d792abc7b069c195207b916953
BLAKE2b-256 a8b5a238201a40d01bf1f72a195cb41eeafef19604af11472f90aaade0dbe3a9

See more details on using hashes here.

File details

Details for the file compnal-0.0.9-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.9-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4db4a0a6c0070e8ed89f929402cd092ba8bc41c43e3f5167b3a32f8a3aaeac3
MD5 8eedcaa734d373dd0bc0f66c29477af6
BLAKE2b-256 ae57b315d158129925937d24c6e44557d51dac485bfa87f7c986e3899aa69f00

See more details on using hashes here.

File details

Details for the file compnal-0.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b6ede3fd9d5a31e293eca1665c039ab2ad71a52aabe1d354d78cc8116de8553b
MD5 6a66b788a670ee4b7ec0c8d564887068
BLAKE2b-256 05a0b749936d46fc10e0679395c6af1b7c84b41722c5ae6ed50cdda1c666be5c

See more details on using hashes here.

File details

Details for the file compnal-0.0.9-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.9-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1dde56b032098f4603a2e4d22b3218287624916f3b3db15c814012dd8581537d
MD5 f7370e3aebc9fdfbd778aec22423044b
BLAKE2b-256 413a6b0b4537f787496cbbaff60e2c18adba5cbbc2cc5066934b7ae815986edb

See more details on using hashes here.

File details

Details for the file compnal-0.0.9-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.9-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e809b5e9b8d96d85dad24a6f5fe258669c2cbbf431b6d259288dc47151acd36a
MD5 31a09c2204cab521d449366174592c09
BLAKE2b-256 b32cd6c778f4fa368148c7a19bf40a18e640a1dc24363a4620eba479b21be0e2

See more details on using hashes here.

File details

Details for the file compnal-0.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4125c5095514b157542c1a57bfdc79a305a87e679a60489f071a8c3cc98ab354
MD5 907c8b942ab791bc426a1a89838576a8
BLAKE2b-256 db72afb2d84a5748e623faa36575f10e4dd06b89d1d58dbfeaf9bb5cc62bd574

See more details on using hashes here.

File details

Details for the file compnal-0.0.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 547ab332a8cb52f9acd52a305f6792358e6b3c36f34cb9d034515429cee08041
MD5 3af259f70339ae00fbbeda4368ca932f
BLAKE2b-256 954909b710afa26b526961026b0a03ade6a6056cc34e678b0e57c22610d9b5de

See more details on using hashes here.

File details

Details for the file compnal-0.0.9-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.9-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cfe6c8bb02ad40221320cd9d5c247c43f7d8c4075a14594a5be50f35effb0269
MD5 6df0f33f51c7312f0a414b0ab204effb
BLAKE2b-256 286267f7648034da13e3f25cf1c75fbb97fecebfc0ede7aecc82a0debc1a04ef

See more details on using hashes here.

File details

Details for the file compnal-0.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9636394c58551e2aae485d7a463117353f076f23c057ef43b0393323a8b15470
MD5 62c4f967a2c67aa9b623d3acbd8f6d43
BLAKE2b-256 6d9c92647d902e77e765ecbc9386ec939e111ab5b24a5117859b020abb6a881f

See more details on using hashes here.

File details

Details for the file compnal-0.0.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f3dd371bfb28f5a7d3b301759823333a3c18f906295f1bfa6ccf3c52fc680d4e
MD5 58eed7b358f76fa4308f1fe1485bab24
BLAKE2b-256 4764b4ba6be96c95814dcb92665162593d8d2d810150f98abcad9332299bf12e

See more details on using hashes here.

File details

Details for the file compnal-0.0.9-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.9-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 013eff97b5c414a3e0c86a28f54ef835642dd3741e333bbb0c8cf5336f578792
MD5 82cdf01addad52ef6395b4c690a1683e
BLAKE2b-256 4efb95c38589529e7419db1908ef0a05ed1654cbbf1392617d2866e78b03b095

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page