Skip to main content

A method for estimating the standard reaction Gibbs energy of biochemical reactions

Project description

Component Contribution

PyPI version Anaconda-Server Badge Python version MIT license

pipeline status codecov Join our Google group Documentation Status

A method for estimating the standard reaction Gibbs energy of biochemical reactions.

Cite us

For more information on the method behind component-contribution, please view our open access paper:

Noor E, Haraldsdóttir HS, Milo R, Fleming RMT (2013) Consistent Estimation of Gibbs Energy Using Component Contributions, PLoS Comput Biol 9:e1003098, DOI: 10.1371/journal.pcbi.1003098

Please, cite this paper if you publish work that uses component-contribution.

Installation

  • pip install component-contribution

Dependencies

  • Python 3.9+
  • PyPI dependencies for prediction:
    • equilibrator-cache
    • numpy
    • scipy
    • pandas
    • pint
    • path
    • periodictable
    • uncertainties
  • PyPI dependencies for training a new model:
    • openbabel
    • equilibrator-assets

Data sources

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

component-contribution-0.6.0.tar.gz (41.4 kB view details)

Uploaded Source

Built Distribution

component_contribution-0.6.0-py2.py3-none-any.whl (29.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file component-contribution-0.6.0.tar.gz.

File metadata

File hashes

Hashes for component-contribution-0.6.0.tar.gz
Algorithm Hash digest
SHA256 9948283bcaa91ba5b4f25b21789c8916b8cc41086406b138df2d7edab319161b
MD5 1e4d516735a5b5d83755c58c09745b82
BLAKE2b-256 c4926b4003ae196d31a39a3afc60ad32d8cd5e1f796d81596f1f92aba6cced84

See more details on using hashes here.

File details

Details for the file component_contribution-0.6.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for component_contribution-0.6.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 801b6382dc864d2a39dcae2e5e02abc86d63a92fcfc5b1b7fd62c37ad290b094
MD5 f481d6b2a56fcd1b0d08538c868f288a
BLAKE2b-256 0ec7ddb85079735395222ac36854e16e701f21ed8e001948e583c0b7bbc87bbf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page