Skip to main content

Use Composio to get an array of tools with your Julep wokflow.

Reason this release was yanked:

Bug

Project description

🚀🔗 Integrating Composio with Julep

Streamline the integration of Composio within the Julep agentic framework to enhance the interaction capabilities of Julep agents with external applications, significantly extending their operational range and efficiency.

Objective

  • Facilitate the automation of starring a GitHub repository through the use of conversational commands within the Julep framework, leveraging Composio's OpenAI Function Calls.

Installation and Setup

Ensure you have the necessary packages installed and connect your GitHub account to allow your agents to utilize GitHub functionalities.

# Install Composio LangChain package
pip install composio-openai

# Connect your GitHub account
composio-cli add github

# View available applications you can connect with
composio-cli show-apps

Usage Steps

1. Initialize Environment and Client

Set up your development environment by importing essential libraries and configuring the Julep client.

import os
import textwrap
from julep import Client
from dotenv import load_dotenv


load_dotenv()

api_key = os.environ["JULEP_API_KEY"]
base_url = os.environ["JULEP_API_URL"]
# openai_api_key = os.environ["OPENAI_API_KEY"]

client = Client(api_key=api_key, base_url=base_url)



name = "Jessica"
about = "Jessica is a forward-thinking tech entrepreneur with a sharp eye for disruptive technologies. She excels in identifying and nurturing innovative tech startups, with a particular interest in sustainability and AI."
default_settings = {
    "temperature": 0.7,
    "top_p": 1,
    "min_p": 0.01,
    "presence_penalty": 0,
    "frequency_penalty": 0,
    "length_penalty": 1.0,
    "max_tokens": 150,
}

2. Integrating GitHub Tools with Composio for LangChain Operations

This section guides you through the process of integrating GitHub tools into your LangChain projects using Composio's services.

from composio_julep import App, ComposioToolset
    
toolset = ComposioToolset()
composio_tools = toolset.get_tools(tools=App.GITHUB)


agent = client.agents.create(
    name=name,
    about=about,
    default_settings=default_settings,
    model="gpt-4-turbo",
    tools=composio_tools,
)

Step 3: Agent Execution

This step involves configuring and executing the agent to carry out specific tasks, for example, starring a GitHub repository.

about = """
Sawradip, a software developer, is passionate about impactful tech. 
At the tech fair, he seeks investors and collaborators for his project.
"""
user = client.users.create(
    name="Sawradip",
    about=about,
)

situation_prompt = """You are Jessica, a key figure in the tech community, always searching for groundbreaking technologies. At a tech fair filled with innovative projects, your goal is to find and support the next big thing.

Your journey through the fair is highlighted by encounters with various projects, from groundbreaking to niche. You believe in the power of unexpected innovation.

Recent Tweets
1. 'Amazed by the tech fair's creativity. The future is bright. #TechInnovation'
2. 'Met a developer with a transformative tool for NGOs. This is the
"""

session = client.sessions.create(
    user_id=user.id, agent_id=agent.id, situation=situation_prompt
)

user_msg = "Hi, I am presenting my project, hosted at github repository composiohq/composio. If you like it, adding a star would be helpful "

# user_msg = "What do you like about tech?"

response = client.sessions.chat(
    session_id=session.id,
    messages=[
        {
            "role": "user",
            "content": user_msg,
            "name": "Sawradip",
        }
    ],
    recall=True,
    remember=True,
)

pprint(response)

Step 4: Validate Response

Execute and validate the response to ensure the task was completed successfully.

execution_output = toolset.handle_tool_calls(response)
print(execution_output)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

composio_julep-0.5.14.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

composio_julep-0.5.14-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file composio_julep-0.5.14.tar.gz.

File metadata

  • Download URL: composio_julep-0.5.14.tar.gz
  • Upload date:
  • Size: 4.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for composio_julep-0.5.14.tar.gz
Algorithm Hash digest
SHA256 61653fbe31befa76148e8e34e3e397e42b11139822dea1e08c486b401797c64d
MD5 1e957e7f4ea0705e1f1e600ca271f068
BLAKE2b-256 391af66a134fa070cc8229f70eb5bee585251769df347cc8dc8530c044718959

See more details on using hashes here.

File details

Details for the file composio_julep-0.5.14-py3-none-any.whl.

File metadata

File hashes

Hashes for composio_julep-0.5.14-py3-none-any.whl
Algorithm Hash digest
SHA256 615e1759d4862d72f11ee47119d20840ac20636f5b9de0c1c6579ae244975114
MD5 72eef35186a67c0623bbe6821e09f8c2
BLAKE2b-256 6c3982a04624db2bedf7fce2677d8fb72d8dffa1747dbb0e94d24359f7d1edcf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page