Skip to main content

Use Composio to get an array of tools with your Julep wokflow.

Project description

🚀🔗 Integrating Composio with Julep

Streamline the integration of Composio within the Julep agentic framework to enhance the interaction capabilities of Julep agents with external applications, significantly extending their operational range and efficiency.

Objective

  • Facilitate the automation of starring a GitHub repository through the use of conversational commands within the Julep framework, leveraging Composio's OpenAI Function Calls.

Installation and Setup

Ensure you have the necessary packages installed and connect your GitHub account to allow your agents to utilize GitHub functionalities.

# Install Composio LangChain package
pip install composio-openai

# Connect your GitHub account
composio-cli add github

# View available applications you can connect with
composio-cli show-apps

Usage Steps

1. Initialize Environment and Client

Set up your development environment by importing essential libraries and configuring the Julep client.

import os
import textwrap
from julep import Client
from dotenv import load_dotenv


load_dotenv()

api_key = os.environ["JULEP_API_KEY"]
base_url = os.environ["JULEP_API_URL"]
# openai_api_key = os.environ["OPENAI_API_KEY"]

client = Client(api_key=api_key, base_url=base_url)



name = "Jessica"
about = "Jessica is a forward-thinking tech entrepreneur with a sharp eye for disruptive technologies. She excels in identifying and nurturing innovative tech startups, with a particular interest in sustainability and AI."
default_settings = {
    "temperature": 0.7,
    "top_p": 1,
    "min_p": 0.01,
    "presence_penalty": 0,
    "frequency_penalty": 0,
    "length_penalty": 1.0,
    "max_tokens": 150,
}

2. Integrating GitHub Tools with Composio for LangChain Operations

This section guides you through the process of integrating GitHub tools into your LangChain projects using Composio's services.

from composio_julep import App, ComposioToolSet
    
toolset = ComposioToolSet()
composio_tools = toolset.get_tools(tools=App.GITHUB)


agent = client.agents.create(
    name=name,
    about=about,
    default_settings=default_settings,
    model="gpt-4-turbo",
    tools=composio_tools,
)

Step 3: Agent Execution

This step involves configuring and executing the agent to carry out specific tasks, for example, starring a GitHub repository.

about = """
Sawradip, a software developer, is passionate about impactful tech. 
At the tech fair, he seeks investors and collaborators for his project.
"""
user = client.users.create(
    name="Sawradip",
    about=about,
)

situation_prompt = """You are Jessica, a key figure in the tech community, always searching for groundbreaking technologies. At a tech fair filled with innovative projects, your goal is to find and support the next big thing.

Your journey through the fair is highlighted by encounters with various projects, from groundbreaking to niche. You believe in the power of unexpected innovation.

Recent Tweets
1. 'Amazed by the tech fair's creativity. The future is bright. #TechInnovation'
2. 'Met a developer with a transformative tool for NGOs. This is the
"""

session = client.sessions.create(
    user_id=user.id, agent_id=agent.id, situation=situation_prompt
)

user_msg = "Hi, I am presenting my project, hosted at github repository composiohq/composio. If you like it, adding a star would be helpful "

# user_msg = "What do you like about tech?"

response = client.sessions.chat(
    session_id=session.id,
    messages=[
        {
            "role": "user",
            "content": user_msg,
            "name": "Sawradip",
        }
    ],
    recall=True,
    remember=True,
)

pprint(response)

Step 4: Validate Response

Execute and validate the response to ensure the task was completed successfully.

execution_output = toolset.handle_tool_calls(response)
print(execution_output)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

composio_julep-0.5.38rc2.tar.gz (4.1 kB view details)

Uploaded Source

Built Distribution

composio_julep-0.5.38rc2-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file composio_julep-0.5.38rc2.tar.gz.

File metadata

  • Download URL: composio_julep-0.5.38rc2.tar.gz
  • Upload date:
  • Size: 4.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for composio_julep-0.5.38rc2.tar.gz
Algorithm Hash digest
SHA256 32b72d40762eff19a963d2f75c4322dc0c77ecbc3ce78d35dac38871e241c717
MD5 adfb9418ea1e8234d4ad9df275c8acc4
BLAKE2b-256 cb2ef669ddbfa4978ae68ef15fa1bdf8cff982b483c6dccd170c5301ae8f288a

See more details on using hashes here.

File details

Details for the file composio_julep-0.5.38rc2-py3-none-any.whl.

File metadata

File hashes

Hashes for composio_julep-0.5.38rc2-py3-none-any.whl
Algorithm Hash digest
SHA256 24acfb13d2e538aa7df4dd1b06018058e1f9acf63f09473f5585d79834b8c1f2
MD5 9250b88cd6e18f09c4a1f1235d79a792
BLAKE2b-256 1a77716838c57f2c5f6b2f85d07b201e5015af8bcee6fd0fc4b39a7e728a3b82

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page