Skip to main content

Use Composio to get array of tools with LnagGraph Agent Workflows

Project description

🦜🕸️ Using Composio With LangGraph

Integrate Composio with LangGraph Agentic workflows & enable them to interact seamlessly with external apps, enhancing their functionality and reach.

Goal

  • Star a repository on GitHub using natural language commands through a LangGraph Agent.

Installation and Setup

Ensure you have the necessary packages installed and connect your GitHub account to allow your agents to utilize GitHub functionalities.

# Install Composio LangGraph package
pip install composio-langgraph

# Connect your GitHub account
composio-cli add github

# View available applications you can connect with
composio-cli show-apps

Usage Steps

1. Import Base Packages

Prepare your environment by initializing necessary imports from LangGraph & LangChain for setting up your agent.

from langchain.agents import create_openai_functions_agent, AgentExecutor
import json
import operator
from typing import Annotated, TypedDict, Sequence

from langchain_openai import ChatOpenAI
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain_core.messages import BaseMessage, HumanMessage, FunctionMessage

from langgraph.graph import StateGraph, END
from langgraph.prebuilt import ToolInvocation, ToolExecutor

2. Fetch GitHub LangGraph Tools via Composio

Access GitHub tools provided by Composio for LangGraph, initialize a tool_executor and get OpenAI-format function schemas from the tools.

from composio_langgraph import Action, ComposioToolSet

# Initialize the toolset for GitHub
composio_toolset = ComposioToolSet()
tools = composio_toolset.get_actions(
    actions=[Action.GITHUB_ACTIVITY_STAR_REPO_FOR_AUTHENTICATED_USER]
)
tool_executor = ToolExecutor(tools)
functions = [convert_to_openai_function(t) for t in tools]

3. Prepare the model

Initialize the LLM class and bind obtained functions to the model.

model = ChatOpenAI(temperature=0, streaming=True)
model = model.bind_functions(functions)

4. Define the Graph Nodes

LangGraph expects you to define different nodes of the agentic workflow as separate functions.

Here we define one node for calling the LLM and another for executing the correct tool(function), with appropriate parameters.

def function_1(state):
    messages = state['messages']
    response = model.invoke(messages)
    return {"messages": [response]}


def function_2(state):
    messages = state['messages']
    last_message = messages[-1]

    parsed_function_call = last_message.additional_kwargs["function_call"]

    action = ToolInvocation(
        tool=parsed_function_call["name"],
        tool_input=json.loads(parsed_function_call["arguments"]),
    )

    response = tool_executor.invoke(action)

    function_message = FunctionMessage(content=str(response), name=action.tool)

    return {"messages": [function_message]}

5. Define the Graph Edges

To establish the agent's workflow, we begin by initializing the workflow with an AgentState to maintain state, followed by specifying the connecting edges between nodes. These edges can be straightforward or conditional, depending on the workflow requirements.

def where_to_go(state):
    messages = state['messages']
    last_message = messages[-1]

    if "function_call" in last_message.additional_kwargs:
        return "continue"
    else:
        return "end"


class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]


workflow = StateGraph(AgentState)
workflow.add_node("agent", function_1)
workflow.add_node("tool", function_2)
workflow.add_conditional_edges(
    "agent",
    where_to_go,
    {
        "continue": "tool",
        "end": END
    }
)
workflow.add_edge('tool', 'agent')
workflow.set_entry_point("agent")

app = workflow.compile()

6. Invoke & Check Response

After the compilation of workflow, we invoke the LLM with a task, and print the final response.

inputs = {
    "messages": [
        HumanMessage(
            content="Star the Github repository sawradip/sawradip"
            )
        ]
    }
response = app.invoke(inputs)
print(response)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

composio_langgraph-0.3.28.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

composio_langgraph-0.3.28-py3-none-any.whl (4.8 kB view details)

Uploaded Python 3

File details

Details for the file composio_langgraph-0.3.28.tar.gz.

File metadata

  • Download URL: composio_langgraph-0.3.28.tar.gz
  • Upload date:
  • Size: 4.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for composio_langgraph-0.3.28.tar.gz
Algorithm Hash digest
SHA256 98f28a00370127d0ead4269450487df97c7b6b6d80b5213194380604bdf07104
MD5 e18f96ddd941b8b807ce5da7ff58af8b
BLAKE2b-256 1fbfcb509c53c763fd06bebe6d643b30c6fce37d277fd636391a453a44e059e7

See more details on using hashes here.

File details

Details for the file composio_langgraph-0.3.28-py3-none-any.whl.

File metadata

File hashes

Hashes for composio_langgraph-0.3.28-py3-none-any.whl
Algorithm Hash digest
SHA256 d4e5f1a6ea6992944c7800f0119dbe39135153a2bd852ce37b9a9b24acb0e1fc
MD5 1ad4af06de078ab903166085f20ea710
BLAKE2b-256 99d82a275f27fc16e4f6ca6afae8fa59fa40d2c099bc822f4dfb19b2afdb11f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page