Skip to main content

Use Composio to get array of tools with LnagGraph Agent Workflows

Project description

🦜🕸️ Using Composio With LangGraph

Integrate Composio with LangGraph Agentic workflows & enable them to interact seamlessly with external apps, enhancing their functionality and reach.

Goal

  • Star a repository on GitHub using natural language commands through a LangGraph Agent.

Installation and Setup

Ensure you have the necessary packages installed and connect your GitHub account to allow your agents to utilize GitHub functionalities.

# Install Composio LangGraph package
pip install composio-langgraph

# Connect your GitHub account
composio-cli add github

# View available applications you can connect with
composio-cli show-apps

Usage Steps

1. Import Base Packages

Prepare your environment by initializing necessary imports from LangGraph & LangChain for setting up your agent.

from typing import Literal

from langchain_openai import ChatOpenAI
from langgraph.graph import MessagesState, StateGraph
from langgraph.prebuilt import ToolNode

2. Fetch GitHub LangGraph Tools via Composio

Access GitHub tools provided by Composio for LangGraph, initialize a ToolNode with necessary tools obtaned from ComposioToolSet.

from composio_langgraph import Action, ComposioToolSet

# Initialize the toolset for GitHub
composio_toolset = ComposioToolSet()
tools = composio_toolset.get_actions(
    actions=[
        Action.GITHUB_ACTIVITY_STAR_REPO_FOR_AUTHENTICATED_USER,
        Action.GITHUB_USERS_GET_AUTHENTICATED,
    ])
tool_node = ToolNode(tools)

3. Prepare the model

Initialize the LLM class and bind obtained tools to the model.

model = ChatOpenAI(temperature=0, streaming=True)
model_with_tools = model.bind_tools(functions)

4. Define the Graph Nodes

LangGraph expects you to define different nodes of the agentic workflow as separate functions. Here we define a node for calling the LLM model.

def call_model(state: MessagesState):
    messages = state["messages"]
    response = model_with_tools.invoke(messages)
    return {"messages": [response]}

5. Define the Graph Nodes and Edges

To establish the agent's workflow, we begin by initializing the workflow with agent and tools node, followed by specifying the connecting edges between nodes, finally compiling the workflow. These edges can be straightforward or conditional, depending on the workflow requirements.

def should_continue(state: MessagesState) -> Literal["tools", "__end__"]:
    messages = state["messages"]
    last_message = messages[-1]
    if last_message.tool_calls:
        return "tools"
    return "__end__"


workflow = StateGraph(MessagesState)

# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)

workflow.add_edge("__start__", "agent")
workflow.add_conditional_edges(
    "agent",
    should_continue,
)
workflow.add_edge("tools", "agent")

app = workflow.compile()

6. Invoke & Check Response

After the compilation of workflow, we invoke the LLM with a task, and stream the response.

for chunk in app.stream(
    {
        "messages": [
            (
                "human",
                # "Star the Github Repository composiohq/composio",
                "Get my information.",
            )
        ]
    },
    stream_mode="values",
):
    chunk["messages"][-1].pretty_print()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

composio_langgraph-0.4.5.tar.gz (4.1 kB view details)

Uploaded Source

Built Distribution

composio_langgraph-0.4.5-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file composio_langgraph-0.4.5.tar.gz.

File metadata

  • Download URL: composio_langgraph-0.4.5.tar.gz
  • Upload date:
  • Size: 4.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for composio_langgraph-0.4.5.tar.gz
Algorithm Hash digest
SHA256 12960333e2e33325c469236c98edc47848c7588305718b0fd7899084652191a2
MD5 c84d08d8c96adeeff112424b3797f524
BLAKE2b-256 d8a3848eaed190eaf772cf4f89bfb5616786e0c54d868e92e1f1da16aa063afc

See more details on using hashes here.

File details

Details for the file composio_langgraph-0.4.5-py3-none-any.whl.

File metadata

File hashes

Hashes for composio_langgraph-0.4.5-py3-none-any.whl
Algorithm Hash digest
SHA256 69235e6f5329dfa41acdab1575e9f57a1a9399f4b3e92a869aa2c74585373e16
MD5 7511d9836ba176cfa02561b2a47c07a3
BLAKE2b-256 c3c415cddd59741e73d5d6ea85f299fb5e9596c217f14c87e8162316eb959144

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page