Skip to main content

Use Composio to get array of tools with LnagGraph Agent Workflows

Project description

🦜🕸️ Using Composio With LangGraph

Integrate Composio with LangGraph Agentic workflows & enable them to interact seamlessly with external apps, enhancing their functionality and reach.

Goal

  • Star a repository on GitHub using natural language commands through a LangGraph Agent.

Installation and Setup

Ensure you have the necessary packages installed and connect your GitHub account to allow your agents to utilize GitHub functionalities.

# Install Composio LangGraph package
pip install composio-langgraph

# Connect your GitHub account
composio-cli add github

# View available applications you can connect with
composio-cli show-apps

Usage Steps

1. Import Base Packages

Prepare your environment by initializing necessary imports from LangGraph & LangChain for setting up your agent.

from typing import Literal

from langchain_openai import ChatOpenAI
from langgraph.graph import MessagesState, StateGraph
from langgraph.prebuilt import ToolNode

2. Fetch GitHub LangGraph Tools via Composio

Access GitHub tools provided by Composio for LangGraph, initialize a ToolNode with necessary tools obtaned from ComposioToolSet.

from composio_langgraph import Action, ComposioToolSet

# Initialize the toolset for GitHub
composio_toolset = ComposioToolSet()
tools = composio_toolset.get_actions(
    actions=[
        Action.GITHUB_ACTIVITY_STAR_REPO_FOR_AUTHENTICATED_USER,
        Action.GITHUB_USERS_GET_AUTHENTICATED,
    ])
tool_node = ToolNode(tools)

3. Prepare the model

Initialize the LLM class and bind obtained tools to the model.

model = ChatOpenAI(temperature=0, streaming=True)
model_with_tools = model.bind_tools(functions)

4. Define the Graph Nodes

LangGraph expects you to define different nodes of the agentic workflow as separate functions. Here we define a node for calling the LLM model.

def call_model(state: MessagesState):
    messages = state["messages"]
    response = model_with_tools.invoke(messages)
    return {"messages": [response]}

5. Define the Graph Nodes and Edges

To establish the agent's workflow, we begin by initializing the workflow with agent and tools node, followed by specifying the connecting edges between nodes, finally compiling the workflow. These edges can be straightforward or conditional, depending on the workflow requirements.

def should_continue(state: MessagesState) -> Literal["tools", "__end__"]:
    messages = state["messages"]
    last_message = messages[-1]
    if last_message.tool_calls:
        return "tools"
    return "__end__"


workflow = StateGraph(MessagesState)

# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)

workflow.add_edge("__start__", "agent")
workflow.add_conditional_edges(
    "agent",
    should_continue,
)
workflow.add_edge("tools", "agent")

app = workflow.compile()

6. Invoke & Check Response

After the compilation of workflow, we invoke the LLM with a task, and stream the response.

for chunk in app.stream(
    {
        "messages": [
            (
                "human",
                # "Star the Github Repository composiohq/composio",
                "Get my information.",
            )
        ]
    },
    stream_mode="values",
):
    chunk["messages"][-1].pretty_print()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

composio_langgraph-0.5.37.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

composio_langgraph-0.5.37-py3-none-any.whl (4.2 kB view details)

Uploaded Python 3

File details

Details for the file composio_langgraph-0.5.37.tar.gz.

File metadata

  • Download URL: composio_langgraph-0.5.37.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for composio_langgraph-0.5.37.tar.gz
Algorithm Hash digest
SHA256 7c698b3817cc734601152fee70bf04191a499c61ac520d8d683e85f1fb183aa7
MD5 32e990ba5e2e60b10667e56e1da2bbe3
BLAKE2b-256 08c2abe4fdb2b9bcd09ce0814db00ac95c8d9bd0fbecfd89bc6ae724266a9826

See more details on using hashes here.

File details

Details for the file composio_langgraph-0.5.37-py3-none-any.whl.

File metadata

File hashes

Hashes for composio_langgraph-0.5.37-py3-none-any.whl
Algorithm Hash digest
SHA256 5cab8dc60dd290a9b495209f6e11e8e0a91e9deb922c640629321786146f201f
MD5 1262202f49085e7b4caa7e4788958b7d
BLAKE2b-256 81e356492f75cc815a2b703316ce350b7be0ab1d0a612ccc66c91710ceb680c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page