Skip to main content

Use Composio to get an array of tools with your LlamaIndex agent.

Project description

🦙 Using Composio With LlamaIndex

Integrate Composio with llamaindex agents to allow them to interact seamlessly with external apps & data sources, enhancing their functionality and reach.

Goal

  • Star a repository on GitHub using natural language commands through a llamaindex Agent.

Installation and Setup

Ensure you have the necessary packages installed and connect your GitHub account to allow your agents to utilize GitHub functionalities.

# Install Composio llamaindex package
pip install composio-llamaindex

# Connect your GitHub account
composio-cli add github

# View available applications you can connect with
composio-cli show-apps

Usage Steps

1. Import Base Packages

Prepare your environment by initializing necessary imports from llamaindex and setting up your agent.

from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage
from llama_index.core.agent import FunctionCallingAgentWorker

import dotenv
from llama_index.core.tools import FunctionTool

# Load environment variables from .env
dotenv.load_dotenv()

llm = OpenAI(model="gpt-4-turbo")

2. Fetch GitHub llamaindex Tools via Composio

Access GitHub tools provided by Composio for llamaindex.

from composio_llamaindex import App, Action, ComposioToolSet

# Get All the tools
composio_toolset = ComposioToolSet()
tools = composio_toolset.get_actions(
    actions=[Action.GITHUB_STAR_A_REPOSITORY_FOR_THE_AUTHENTICATED_USER]
)
print(tools)

3. Prepare the Agent

Configure the agent to perform tasks such as starring a repository on GitHub.

prefix_messages = [
    ChatMessage(
        role="system",
        content=(
            "You are now a integration agent, and what  ever you are requested, you will try to execute utilizing your toools."
        ),
    )
]

agent = FunctionCallingAgentWorker(
    tools=tools,
    llm=llm,
    prefix_messages=prefix_messages,
    max_function_calls=10,
    allow_parallel_tool_calls=False,
    verbose=True,
).as_agent()

4. Check Response

Validate the execution and response from the agent to ensure the task was completed successfully.

response = agent.chat("Hello! I would like to star a repo composiohq/composio on GitHub")
print("Response:", response)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

composio_llamaindex-0.5.30.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

composio_llamaindex-0.5.30-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file composio_llamaindex-0.5.30.tar.gz.

File metadata

  • Download URL: composio_llamaindex-0.5.30.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for composio_llamaindex-0.5.30.tar.gz
Algorithm Hash digest
SHA256 7e215a588806efc05f4c8992c696d69674a0d368aa43b9736a0e2f246ea5eb13
MD5 ca434fce3bdf774bb40552bdfec32792
BLAKE2b-256 a5b2317a32fabce8c7aed261e970cbb4813eb6c29c964c5608240ddfd1d15caf

See more details on using hashes here.

File details

Details for the file composio_llamaindex-0.5.30-py3-none-any.whl.

File metadata

File hashes

Hashes for composio_llamaindex-0.5.30-py3-none-any.whl
Algorithm Hash digest
SHA256 60d20341c6e2fe9a6b004c4b5c81326adb0b62b95781164395255d30253e0df0
MD5 a7183b1ede879bb97eab21fb2d518839
BLAKE2b-256 05e62837a23db2247273b6ce455572d1b44f29eea6050304223174e81da10acf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page