Skip to main content

Use Composio to get an array of tools with your LlamaIndex agent.

Project description

🦙 Using Composio With LlamaIndex

Integrate Composio with llamaindex agents to allow them to interact seamlessly with external apps & data sources, enhancing their functionality and reach.

Goal

  • Star a repository on GitHub using natural language commands through a llamaindex Agent.

Installation and Setup

Ensure you have the necessary packages installed and connect your GitHub account to allow your agents to utilize GitHub functionalities.

# Install Composio llamaindex package
pip install composio-llamaindex

# Connect your GitHub account
composio-cli add github

# View available applications you can connect with
composio-cli show-apps

Usage Steps

1. Import Base Packages

Prepare your environment by initializing necessary imports from llamaindex and setting up your agent.

from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage
from llama_index.core.agent import FunctionCallingAgentWorker

import dotenv
from llama_index.core.tools import FunctionTool

# Load environment variables from .env
dotenv.load_dotenv()

llm = OpenAI(model="gpt-4-turbo")

2. Fetch GitHub llamaindex Tools via Composio

Access GitHub tools provided by Composio for llamaindex.

from composio_llamaindex import App, Action, ComposioToolSet

# Get All the tools
composio_toolset = ComposioToolSet()
tools = composio_toolset.get_actions(
    actions=[Action.GITHUB_STAR_A_REPOSITORY_FOR_THE_AUTHENTICATED_USER]
)
print(tools)

3. Prepare the Agent

Configure the agent to perform tasks such as starring a repository on GitHub.

prefix_messages = [
    ChatMessage(
        role="system",
        content=(
            "You are now a integration agent, and what  ever you are requested, you will try to execute utilizing your toools."
        ),
    )
]

agent = FunctionCallingAgentWorker(
    tools=tools,
    llm=llm,
    prefix_messages=prefix_messages,
    max_function_calls=10,
    allow_parallel_tool_calls=False,
    verbose=True,
).as_agent()

4. Check Response

Validate the execution and response from the agent to ensure the task was completed successfully.

response = agent.chat("Hello! I would like to star a repo composiohq/composio on GitHub")
print("Response:", response)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

composio_llamaindex-0.5.37rc1.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

composio_llamaindex-0.5.37rc1-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file composio_llamaindex-0.5.37rc1.tar.gz.

File metadata

File hashes

Hashes for composio_llamaindex-0.5.37rc1.tar.gz
Algorithm Hash digest
SHA256 39fc2a9f711314799e11c75a574751841bed0cf8d54302fc0ffa17bebd9022fd
MD5 5c888c9aa9dfd031f6c957b056d8bf83
BLAKE2b-256 292a1f2a08d65f192f189b9b1da50f85ec866ff71fc9489627159e5b118df8ae

See more details on using hashes here.

File details

Details for the file composio_llamaindex-0.5.37rc1-py3-none-any.whl.

File metadata

File hashes

Hashes for composio_llamaindex-0.5.37rc1-py3-none-any.whl
Algorithm Hash digest
SHA256 39cbf3b46b1967c86039411f0a0238cc0d13f3894848e8d586cd4073b1093ffe
MD5 468e7398ae7c9fce590394f9bb5c29e0
BLAKE2b-256 c8da6349fdeac4fbdebddd525c1ca68b8fff8d4952f864004a9f896e49c67382

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page