Skip to main content

Use Composio to get an array of tools with your LlamaIndex agent.

Project description

🦙 Using Composio With LlamaIndex

Integrate Composio with llamaindex agents to allow them to interact seamlessly with external apps & data sources, enhancing their functionality and reach.

Goal

  • Star a repository on GitHub using natural language commands through a llamaindex Agent.

Installation and Setup

Ensure you have the necessary packages installed and connect your GitHub account to allow your agents to utilize GitHub functionalities.

# Install Composio llamaindex package
pip install composio-llamaindex

# Connect your GitHub account
composio-cli add github

# View available applications you can connect with
composio-cli show-apps

Usage Steps

1. Import Base Packages

Prepare your environment by initializing necessary imports from llamaindex and setting up your agent.

from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage
from llama_index.core.agent import FunctionCallingAgentWorker

import dotenv
from llama_index.core.tools import FunctionTool

# Load environment variables from .env
dotenv.load_dotenv()

llm = OpenAI(model="gpt-4-turbo")

2. Fetch GitHub llamaindex Tools via Composio

Access GitHub tools provided by Composio for llamaindex.

from composio_llamaindex import App, Action, ComposioToolSet

# Get All the tools
composio_toolset = ComposioToolSet()
tools = composio_toolset.get_actions(
    actions=[Action.GITHUB_STAR_A_REPOSITORY_FOR_THE_AUTHENTICATED_USER]
)
print(tools)

3. Prepare the Agent

Configure the agent to perform tasks such as starring a repository on GitHub.

prefix_messages = [
    ChatMessage(
        role="system",
        content=(
            "You are now a integration agent, and what  ever you are requested, you will try to execute utilizing your toools."
        ),
    )
]

agent = FunctionCallingAgentWorker(
    tools=tools,
    llm=llm,
    prefix_messages=prefix_messages,
    max_function_calls=10,
    allow_parallel_tool_calls=False,
    verbose=True,
).as_agent()

4. Check Response

Validate the execution and response from the agent to ensure the task was completed successfully.

response = agent.chat("Hello! I would like to star a repo composiohq/composio on GitHub")
print("Response:", response)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

composio_llamaindex-0.5.44.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

composio_llamaindex-0.5.44-py3-none-any.whl (4.4 kB view details)

Uploaded Python 3

File details

Details for the file composio_llamaindex-0.5.44.tar.gz.

File metadata

  • Download URL: composio_llamaindex-0.5.44.tar.gz
  • Upload date:
  • Size: 4.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for composio_llamaindex-0.5.44.tar.gz
Algorithm Hash digest
SHA256 63361cf40975518533feb14d97bc7d0c105ab8b37c6f32358bb876433ef40dc7
MD5 8051e53f19b06702332dd196f305c995
BLAKE2b-256 b6d7f30a2b99e2761bbb06cab174d9637b5834eae2e5413b05a9b28e650249fa

See more details on using hashes here.

File details

Details for the file composio_llamaindex-0.5.44-py3-none-any.whl.

File metadata

File hashes

Hashes for composio_llamaindex-0.5.44-py3-none-any.whl
Algorithm Hash digest
SHA256 caa1bc8b3546eeeae6ef83ebd7be9fe164e1c37171955b81f5575e290c25c417
MD5 c68530b0bbe4d170d0daa9e25dd98b79
BLAKE2b-256 3ba60320ed19a4f89b8daae890a16734d55b066fda7c6b443119a68e74485164

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page