Skip to main content

Use Composio to get an array of tools with your LlamaIndex agent.

Project description

🦙 Using Composio With LlamaIndex

Integrate Composio with llamaindex agents to allow them to interact seamlessly with external apps & data sources, enhancing their functionality and reach.

Goal

  • Star a repository on GitHub using natural language commands through a llamaindex Agent.

Installation and Setup

Ensure you have the necessary packages installed and connect your GitHub account to allow your agents to utilize GitHub functionalities.

# Install Composio llamaindex package
pip install composio-llamaindex

# Connect your GitHub account
composio-cli add github

# View available applications you can connect with
composio-cli show-apps

Usage Steps

1. Import Base Packages

Prepare your environment by initializing necessary imports from llamaindex and setting up your agent.

from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage
from llama_index.core.agent import FunctionCallingAgentWorker

import dotenv
from llama_index.core.tools import FunctionTool

# Load environment variables from .env
dotenv.load_dotenv()

llm = OpenAI(model="gpt-4-turbo")

2. Fetch GitHub llamaindex Tools via Composio

Access GitHub tools provided by Composio for llamaindex.

from composio_llamaindex import App, Action, ComposioToolSet

# Get All the tools
composio_toolset = ComposioToolSet()
tools = composio_toolset.get_actions(
    actions=[Action.GITHUB_STAR_A_REPOSITORY_FOR_THE_AUTHENTICATED_USER]
)
print(tools)

3. Prepare the Agent

Configure the agent to perform tasks such as starring a repository on GitHub.

prefix_messages = [
    ChatMessage(
        role="system",
        content=(
            "You are now a integration agent, and what  ever you are requested, you will try to execute utilizing your toools."
        ),
    )
]

agent = FunctionCallingAgentWorker(
    tools=tools,
    llm=llm,
    prefix_messages=prefix_messages,
    max_function_calls=10,
    allow_parallel_tool_calls=False,
    verbose=True,
).as_agent()

4. Check Response

Validate the execution and response from the agent to ensure the task was completed successfully.

response = agent.chat("Hello! I would like to star a repo composiohq/composio on GitHub")
print("Response:", response)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

composio_llamaindex-0.5.48rc1.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

composio_llamaindex-0.5.48rc1-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file composio_llamaindex-0.5.48rc1.tar.gz.

File metadata

File hashes

Hashes for composio_llamaindex-0.5.48rc1.tar.gz
Algorithm Hash digest
SHA256 f4fa2e86e283f34894aa9e4ea62a6b48430243cc7dcebaf7ecb2a3f48c91fc86
MD5 6a6d6eb327c7c812f447b3b02bb1a13b
BLAKE2b-256 e4de17fe584ad048b3c9ee9af7051d23c09aa62856af1a88312a12cd04f7fba6

See more details on using hashes here.

File details

Details for the file composio_llamaindex-0.5.48rc1-py3-none-any.whl.

File metadata

File hashes

Hashes for composio_llamaindex-0.5.48rc1-py3-none-any.whl
Algorithm Hash digest
SHA256 4594a4f4d0858ee3903096d03bf459b7c34b11887a68909f4fe61a09a5c92acf
MD5 8167cef3f455908cb1d671a14bf6f142
BLAKE2b-256 834a3b62562cdcfbaba3ea5dabaff7ca9c9689929d7b852546eb9a444b00e866

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page