Skip to main content

A set of tools to compress gensim fasttext models

Project description

Compress-fastText

This Python 3 package allows to compress fastText word embedding models (from the gensim package) by orders of magnitude, without significantly affecting their quality.

Note: gensim==4.0.0 has introduced some backward-incompatible changes:

  • With gensim<4.0.0, please use compress-fasttext<=0.0.7 (and optionally Russian models from our first release).
  • With gensim>=4.0.0, please use compress-fasttext>=0.1.0 (and optionally Russian or English models from our 0.1.0 release).
  • Some models are no longer supported in the new version of gensim+compress-fasttext (for example, multiple models from RusVectores that use compatible_hash=False).
  • For any particular model, compatibility should be determined experimentally. If you notice any strange behaviour, please report in the Github issues.

The package can be installed with pip:

pip install compress-fasttext[full]

If you are not going to perform matrix decomposition or quantization, you can install a variety with less dependencies:

pip install compress-fasttext

This blogpost (in Russian) gives more details about the motivation and methods for compressing fastText models.

Model compression

You can use this package to compress your own fastText model (or one downloaded e.g. from RusVectores):

Compress a model in Gensim format:

import gensim
import compress_fasttext
big_model = gensim.models.fasttext.FastTextKeyedVectors.load('path-to-original-model')
small_model = compress_fasttext.prune_ft_freq(big_model, pq=True)
small_model.save('path-to-new-model')

Import a model in Facebook original format and compress it:

from gensim.models.fasttext import load_facebook_model
import compress_fasttext
big_model = load_facebook_model('path-to-original-model').wv
small_model = compress_fasttext.prune_ft_freq(big_model, pq=True)
small_model.save('path-to-new-model')

To perform this compression, you will need to pip install gensim==3.8.3 pqkmeans beforehand.

Different compression methods include:

  • matrix decomposition (svd_ft)
  • product quantization (quantize_ft)
  • optimization of feature hashing (prune_ft)
  • feature selection (prune_ft_freq)

The recommended approach is combination of feature selection and quantization (prune_ft_freq with pq=True).

Model usage

If you just need a tiny fastText model for Russian, you can download this 21-megabyte model. It's a compressed version of geowac_tokens_none_fasttextskipgram_300_5_2020 model from RusVectores.

If compress-fasttext is already installed, you can download and use this tiny model

import compress_fasttext
small_model = compress_fasttext.models.CompressedFastTextKeyedVectors.load(
    'https://github.com/avidale/compress-fasttext/releases/download/gensim-4-draft/geowac_tokens_sg_300_5_2020-100K-20K-100.bin'
)
print(small_model['спасибо'])
# [ 0.26762889  0.35489027 ...  -0.06149674] # a 300-dimensional vector
print(small_model.most_similar('котенок'))
# [('кот', 0.7391024827957153), ('пес', 0.7388300895690918), ('малыш', 0.7280327081680298), ... ]

The class CompressedFastTextKeyedVectors inherits from gensim.models.fasttext.FastTextKeyedVectors, but makes a few additional optimizations.

For English, you can use this tiny model, obtained by compressing the model by Facebook.

import compress_fasttext
small_model = compress_fasttext.models.CompressedFastTextKeyedVectors.load(
    'https://github.com/avidale/compress-fasttext/releases/download/v0.0.4/cc.en.300.compressed.bin'
)
print(small_model['hello'])
# [ 1.84736611e-01  6.32683930e-03  4.43901886e-03 ... -2.88431027e-02]  # a 300-dimensional vector
print(small_model.most_similar('Python'))
# [('PHP', 0.5252903699874878), ('.NET', 0.5027452707290649), ('Java', 0.4897131323814392),  ... ]

More compressed models for 101 various languages can be found at https://zenodo.org/record/4905385.

Notes

This code is heavily based on the navec package by Alexander Kukushkin and the blogpost by Andrey Vasnetsov about shrinking fastText embeddings.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

compress-fasttext-0.1.0.tar.gz (12.8 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page