Skip to main content

Library for utilization of compressed safetensors of neural network models

Project description

compressed-tensors

The compressed-tensors library extends the safetensors format, providing a versatile and efficient way to store and manage compressed tensor data. This library supports various quantization and sparsity schemes, making it a unified format for handling different model optimizations like GPTQ, AWQ, SmoothQuant, INT8, FP8, SparseGPT, and more.

Why compressed-tensors?

As model compression becomes increasingly important for efficient deployment of LLMs, the landscape of quantization and compression techniques has become increasingly fragmented. Each method often comes with its own storage format and loading procedures, making it challenging to work with multiple techniques or switch between them. compressed-tensors addresses this by providing a single, extensible format that can represent a wide variety of compression schemes.

  • Unified Checkpoint Format: Supports various compression schemes in a single, consistent format.
  • Wide Compatibility: Works with popular quantization methods like GPTQ, SmoothQuant, and FP8. See llm-compressor
  • Flexible Quantization Support:
    • Weight-only quantization (e.g., W4A16, W8A16, WnA16)
    • Activation quantization (e.g., W8A8)
    • KV cache quantization
    • Non-uniform schemes (different layers can be quantized in different ways!)
  • Sparsity Support: Handles both unstructured and semi-structured (e.g., 2:4) sparsity patterns.
  • Open-Source Integration: Designed to work seamlessly with Hugging Face models and PyTorch.

This allows developers and researchers to easily experiment with composing different quantization methods, simplify model deployment pipelines, and reduce the overhead of supporting multiple compression formats in inference engines.

Installation

From PyPI

Stable release:

pip install compressed-tensors

Nightly release:

pip install compressed-tensors-nightly

From Source

git clone https://github.com/neuralmagic/compressed-tensors
cd compressed-tensors
pip install -e .

Getting started

Saving/Loading Compressed Tensors (Bitmask Compression)

The function save_compressed uses the compression_format argument to apply compression to tensors. The function load_compressed reverses the process: converts the compressed weights on disk to decompressed weights in device memory.

from compressed_tensors import save_compressed, load_compressed, BitmaskConfig
from torch import Tensor
from typing import Dict

# the example BitmaskConfig method efficiently compresses 
# tensors with large number of zero entries 
compression_config = BitmaskConfig()

tensors: Dict[str, Tensor] = {"tensor_1": Tensor(
    [[0.0, 0.0, 0.0], 
     [1.0, 1.0, 1.0]]
)}
# compress tensors using BitmaskConfig compression format (save them efficiently on disk)
save_compressed(tensors, "model.safetensors", compression_format=compression_config.format)

# decompress tensors (load_compressed returns a generator for memory efficiency)
decompressed_tensors = {}
for tensor_name, tensor in load_compressed("model.safetensors", compression_config = compression_config):
    decompressed_tensors[tensor_name] = tensor

Saving/Loading Compressed Models (Bitmask Compression)

We can apply bitmask compression to a whole model. For more detailed example see example directory.

from compressed_tensors import save_compressed_model, load_compressed, BitmaskConfig
from transformers import AutoModelForCausalLM

model_name = "neuralmagic/llama2.c-stories110M-pruned50"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")

original_state_dict = model.state_dict()

compression_config = BitmaskConfig()

# save compressed model weights
save_compressed_model(model, "compressed_model.safetensors", compression_format=compression_config.format)

# load compressed model weights (`dict` turns generator into a dictionary)
state_dict = dict(load_compressed("compressed_model.safetensors", compression_config))

For more in-depth tutorial on bitmask compression, refer to the notebook.

Saving a Compressed Model with PTQ

We can use compressed-tensors to run basic post training quantization (PTQ) and save the quantized model compressed on disk

model_name = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cuda:0", torch_dtype="auto")

config = QuantizationConfig.parse_file("./examples/bit_packing/int4_config.json")
config.quantization_status = QuantizationStatus.CALIBRATION
apply_quantization_config(model, config)

dataset = load_dataset("ptb_text_only")["train"]
tokenizer = AutoTokenizer.from_pretrained(model_name)

def tokenize_function(examples):
    return tokenizer(examples["sentence"], padding=False, truncation=True, max_length=1024)

tokenized_dataset = dataset.map(tokenize_function, batched=True)
data_loader = DataLoader(tokenized_dataset, batch_size=1, collate_fn=DefaultDataCollator())

with torch.no_grad():
    for idx, sample in tqdm(enumerate(data_loader), desc="Running calibration"):
        sample = {key: value.to(device) for key,value in sample.items()}
        _ = model(**sample)

        if idx >= 512:
            break

model.apply(freeze_module_quantization)
model.apply(compress_quantized_weights)

output_dir = "./ex_llama1.1b_w4a16_packed_quantize"
compressor = ModelCompressor(quantization_config=config)
compressed_state_dict = compressor.compress(model)
model.save_pretrained(output_dir, state_dict=compressed_state_dict)

For more in-depth tutorial on quantization compression, refer to the notebook.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file compressed-tensors-nightly-0.6.0.20240923.tar.gz.

File metadata

File hashes

Hashes for compressed-tensors-nightly-0.6.0.20240923.tar.gz
Algorithm Hash digest
SHA256 bc2fe526f04e1e391071891a8381596ac59f11622ba7e61a4b5021470759e6f6
MD5 b042cf39e7595270a09ad14e5c32251f
BLAKE2b-256 38240d1370c9a942f4135081e3858a3820c776ce5bee1a1c12962d5cb6ef2ed5

See more details on using hashes here.

File details

Details for the file compressed_tensors_nightly-0.6.0.20240923-py3-none-any.whl.

File metadata

File hashes

Hashes for compressed_tensors_nightly-0.6.0.20240923-py3-none-any.whl
Algorithm Hash digest
SHA256 ba060c90b109323ae355d9fde3e4d90c3911e0648a020e61b4d6cfd87b2a984a
MD5 45f3c733e060bc3a2f3432f14d20f0f1
BLAKE2b-256 c4465bae0b7c6468213f031a2c150812654f1c9f0948a47e8fadba652ff74253

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page