Skip to main content

Library for utilization of compressed safetensors of neural network models

Project description

compressed-tensors

The compressed-tensors library extends the safetensors format, providing a versatile and efficient way to store and manage compressed tensor data. This library supports various quantization and sparsity schemes, making it a unified format for handling different model optimizations like GPTQ, AWQ, SmoothQuant, INT8, FP8, SparseGPT, and more.

Why compressed-tensors?

As model compression becomes increasingly important for efficient deployment of LLMs, the landscape of quantization and compression techniques has become increasingly fragmented. Each method often comes with its own storage format and loading procedures, making it challenging to work with multiple techniques or switch between them. compressed-tensors addresses this by providing a single, extensible format that can represent a wide variety of compression schemes.

  • Unified Checkpoint Format: Supports various compression schemes in a single, consistent format.
  • Wide Compatibility: Works with popular quantization methods like GPTQ, SmoothQuant, and FP8. See llm-compressor
  • Flexible Quantization Support:
    • Weight-only quantization (e.g., W4A16, W8A16, WnA16)
    • Activation quantization (e.g., W8A8)
    • KV cache quantization
    • Non-uniform schemes (different layers can be quantized in different ways!)
  • Sparsity Support: Handles both unstructured and semi-structured (e.g., 2:4) sparsity patterns.
  • Open-Source Integration: Designed to work seamlessly with Hugging Face models and PyTorch.

This allows developers and researchers to easily experiment with composing different quantization methods, simplify model deployment pipelines, and reduce the overhead of supporting multiple compression formats in inference engines.

Installation

From PyPI

Stable release:

pip install compressed-tensors

Nightly release:

pip install compressed-tensors-nightly

From Source

git clone https://github.com/neuralmagic/compressed-tensors
cd compressed-tensors
pip install -e .

Getting started

Saving/Loading Compressed Tensors (Bitmask Compression)

The function save_compressed uses the compression_format argument to apply compression to tensors. The function load_compressed reverses the process: converts the compressed weights on disk to decompressed weights in device memory.

from compressed_tensors import save_compressed, load_compressed, BitmaskConfig
from torch import Tensor
from typing import Dict

# the example BitmaskConfig method efficiently compresses 
# tensors with large number of zero entries 
compression_config = BitmaskConfig()

tensors: Dict[str, Tensor] = {"tensor_1": Tensor(
    [[0.0, 0.0, 0.0], 
     [1.0, 1.0, 1.0]]
)}
# compress tensors using BitmaskConfig compression format (save them efficiently on disk)
save_compressed(tensors, "model.safetensors", compression_format=compression_config.format)

# decompress tensors (load_compressed returns a generator for memory efficiency)
decompressed_tensors = {}
for tensor_name, tensor in load_compressed("model.safetensors", compression_config = compression_config):
    decompressed_tensors[tensor_name] = tensor

Saving/Loading Compressed Models (Bitmask Compression)

We can apply bitmask compression to a whole model. For more detailed example see example directory.

from compressed_tensors import save_compressed_model, load_compressed, BitmaskConfig
from transformers import AutoModelForCausalLM

model_name = "neuralmagic/llama2.c-stories110M-pruned50"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")

original_state_dict = model.state_dict()

compression_config = BitmaskConfig()

# save compressed model weights
save_compressed_model(model, "compressed_model.safetensors", compression_format=compression_config.format)

# load compressed model weights (`dict` turns generator into a dictionary)
state_dict = dict(load_compressed("compressed_model.safetensors", compression_config))

For more in-depth tutorial on bitmask compression, refer to the notebook.

Saving a Compressed Model with PTQ

We can use compressed-tensors to run basic post training quantization (PTQ) and save the quantized model compressed on disk

model_name = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cuda:0", torch_dtype="auto")

config = QuantizationConfig.parse_file("./examples/bit_packing/int4_config.json")
config.quantization_status = QuantizationStatus.CALIBRATION
apply_quantization_config(model, config)

dataset = load_dataset("ptb_text_only")["train"]
tokenizer = AutoTokenizer.from_pretrained(model_name)

def tokenize_function(examples):
    return tokenizer(examples["sentence"], padding=False, truncation=True, max_length=1024)

tokenized_dataset = dataset.map(tokenize_function, batched=True)
data_loader = DataLoader(tokenized_dataset, batch_size=1, collate_fn=DefaultDataCollator())

with torch.no_grad():
    for idx, sample in tqdm(enumerate(data_loader), desc="Running calibration"):
        sample = {key: value.to(device) for key,value in sample.items()}
        _ = model(**sample)

        if idx >= 512:
            break

model.apply(freeze_module_quantization)
model.apply(compress_quantized_weights)

output_dir = "./ex_llama1.1b_w4a16_packed_quantize"
compressor = ModelCompressor(quantization_config=config)
compressed_state_dict = compressor.compress(model)
model.save_pretrained(output_dir, state_dict=compressed_state_dict)

For more in-depth tutorial on quantization compression, refer to the notebook.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file compressed-tensors-nightly-0.7.0.20241009.tar.gz.

File metadata

File hashes

Hashes for compressed-tensors-nightly-0.7.0.20241009.tar.gz
Algorithm Hash digest
SHA256 641deb731289ed5c86459149c955dcbd6474d6c7360e3688498de01d8953ebaa
MD5 b4f468102ff3b61aaa103d3457014067
BLAKE2b-256 8b35fd2bb2eb218a5633588a88dce8167ef5385abe2abea36038f82f0d96b1ef

See more details on using hashes here.

File details

Details for the file compressed_tensors_nightly-0.7.0.20241009-py3-none-any.whl.

File metadata

File hashes

Hashes for compressed_tensors_nightly-0.7.0.20241009-py3-none-any.whl
Algorithm Hash digest
SHA256 c9b198d529446b04ceb7fcc079973c6932027552252d948a925685405f572cef
MD5 6b8a8289c21a3195de231e9a1ea3dac4
BLAKE2b-256 626e9a69811d92f4b47866abb91eef7430ba3eebc2e2d840f89cc281449ffb45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page