Skip to main content

Library for utilization of compressed safetensors of neural network models

Project description

compressed-tensors

The compressed-tensors library extends the safetensors format, providing a versatile and efficient way to store and manage compressed tensor data. This library supports various quantization and sparsity schemes, making it a unified format for handling different model optimizations like GPTQ, AWQ, SmoothQuant, INT8, FP8, SparseGPT, and more.

Why compressed-tensors?

As model compression becomes increasingly important for efficient deployment of LLMs, the landscape of quantization and compression techniques has become increasingly fragmented. Each method often comes with its own storage format and loading procedures, making it challenging to work with multiple techniques or switch between them. compressed-tensors addresses this by providing a single, extensible format that can represent a wide variety of compression schemes.

  • Unified Checkpoint Format: Supports various compression schemes in a single, consistent format.
  • Wide Compatibility: Works with popular quantization methods like GPTQ, SmoothQuant, and FP8. See llm-compressor
  • Flexible Quantization Support:
    • Weight-only quantization (e.g., W4A16, W8A16, WnA16)
    • Activation quantization (e.g., W8A8)
    • KV cache quantization
    • Non-uniform schemes (different layers can be quantized in different ways!)
  • Sparsity Support: Handles both unstructured and semi-structured (e.g., 2:4) sparsity patterns.
  • Open-Source Integration: Designed to work seamlessly with Hugging Face models and PyTorch.

This allows developers and researchers to easily experiment with composing different quantization methods, simplify model deployment pipelines, and reduce the overhead of supporting multiple compression formats in inference engines.

Installation

From PyPI

Stable release:

pip install compressed-tensors

Nightly release:

pip install compressed-tensors-nightly

From Source

git clone https://github.com/neuralmagic/compressed-tensors
cd compressed-tensors
pip install -e .

Getting started

Saving/Loading Compressed Tensors (Bitmask Compression)

The function save_compressed uses the compression_format argument to apply compression to tensors. The function load_compressed reverses the process: converts the compressed weights on disk to decompressed weights in device memory.

from compressed_tensors import save_compressed, load_compressed, BitmaskConfig
from torch import Tensor
from typing import Dict

# the example BitmaskConfig method efficiently compresses 
# tensors with large number of zero entries 
compression_config = BitmaskConfig()

tensors: Dict[str, Tensor] = {"tensor_1": Tensor(
    [[0.0, 0.0, 0.0], 
     [1.0, 1.0, 1.0]]
)}
# compress tensors using BitmaskConfig compression format (save them efficiently on disk)
save_compressed(tensors, "model.safetensors", compression_format=compression_config.format)

# decompress tensors (load_compressed returns a generator for memory efficiency)
decompressed_tensors = {}
for tensor_name, tensor in load_compressed("model.safetensors", compression_config = compression_config):
    decompressed_tensors[tensor_name] = tensor

Saving/Loading Compressed Models (Bitmask Compression)

We can apply bitmask compression to a whole model. For more detailed example see example directory.

from compressed_tensors import save_compressed_model, load_compressed, BitmaskConfig
from transformers import AutoModelForCausalLM

model_name = "neuralmagic/llama2.c-stories110M-pruned50"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")

original_state_dict = model.state_dict()

compression_config = BitmaskConfig()

# save compressed model weights
save_compressed_model(model, "compressed_model.safetensors", compression_format=compression_config.format)

# load compressed model weights (`dict` turns generator into a dictionary)
state_dict = dict(load_compressed("compressed_model.safetensors", compression_config))

For more in-depth tutorial on bitmask compression, refer to the notebook.

Saving a Compressed Model with PTQ

We can use compressed-tensors to run basic post training quantization (PTQ) and save the quantized model compressed on disk

model_name = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cuda:0", torch_dtype="auto")

config = QuantizationConfig.parse_file("./examples/bit_packing/int4_config.json")
config.quantization_status = QuantizationStatus.CALIBRATION
apply_quantization_config(model, config)

dataset = load_dataset("ptb_text_only")["train"]
tokenizer = AutoTokenizer.from_pretrained(model_name)

def tokenize_function(examples):
    return tokenizer(examples["sentence"], padding=False, truncation=True, max_length=1024)

tokenized_dataset = dataset.map(tokenize_function, batched=True)
data_loader = DataLoader(tokenized_dataset, batch_size=1, collate_fn=DefaultDataCollator())

with torch.no_grad():
    for idx, sample in tqdm(enumerate(data_loader), desc="Running calibration"):
        sample = {key: value.to(device) for key,value in sample.items()}
        _ = model(**sample)

        if idx >= 512:
            break

model.apply(freeze_module_quantization)
model.apply(compress_quantized_weights)

output_dir = "./ex_llama1.1b_w4a16_packed_quantize"
compressor = ModelCompressor(quantization_config=config)
compressed_state_dict = compressor.compress(model)
model.save_pretrained(output_dir, state_dict=compressed_state_dict)

For more in-depth tutorial on quantization compression, refer to the notebook.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file compressed-tensors-nightly-0.8.0.20241114.tar.gz.

File metadata

File hashes

Hashes for compressed-tensors-nightly-0.8.0.20241114.tar.gz
Algorithm Hash digest
SHA256 84cee443cb8ef1735739b84e36bc41bee2354701aebdb8c26b93f243a1dd3501
MD5 fdafa35f933009e8bbe9ece846fa2fd2
BLAKE2b-256 e96dd9b65dfb87b6384e304b77f3c34888b0721b3c77ca3d53720d1958cc78d6

See more details on using hashes here.

File details

Details for the file compressed_tensors_nightly-0.8.0.20241114-py3-none-any.whl.

File metadata

File hashes

Hashes for compressed_tensors_nightly-0.8.0.20241114-py3-none-any.whl
Algorithm Hash digest
SHA256 3b4d6260e9d422b8d1c1d08b60a73b3dc3e7a9d51b3310aa2779ad1a36189d80
MD5 0232c85a36e402bbb067bdfd578f318b
BLAKE2b-256 76e4ccfecbeac58c24781aa3f787eb241207cfc93a23fd1549715f367929c3f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page