Skip to main content

Python module for the Connerney 2020 model.

Project description

con2020

image

Python implementation of the Connerney et al., 1981 and Connerney et al., 2020 Jovian magnetodisc model. This model provides the magnetic field due to a "washer-shaped" current near to Jupiter's magnetic equator. This model code uses either analytical equations from Edwards et al., 2001 or the numerical integration of the Connerney et al., 1981 equations to provide the magnetodisc field, depending upon proximity to the disc along z and the inner edge of the disc, r0.

For the IDL implementation of this model, see: https://github.com/marissav06/con2020_idl

Or for Matlab: https://github.com/marissav06/con2020_matlab

A PDF documentation file is available here: [con2020_final_code_documentation_june9_2022.pd] (https://github.com/gabbyprovan/con2020/files/8869108/con2020_final_code_documentation_june9_2022.pdf). It describes the Connerney current sheet model and general code development (equations used, numerical integration assumptions, accuracy testing, etc.). Details specific to the Python code are provided in this readme file.

These codes were developed by Fran Bagenal, Marty Brennan, Matt James, Gabby Provan, Marissa Vogt, and Rob Wilson, with thanks to Jack Connerney and Masafumi Imai. They are intended for use by the Juno science team and other members of the planetary magnetospheres community. Our contact information is in the documentation PDF file.

Installation

Install the module using pip3:

pip3 install --user con2020

#or if you have previously installed using this method
pip3 install --upgrade --user con2020

Or using this repo:

#clone the repo
git clone https://github.com/gabbyprovan/con2020
cd con2020

#EITHER create a wheel and install (X.X.X is the current version number)
python3 setup.py bdist_wheel
pip3 install --user dist/con2020-X.X.X-py3-none-any.whl

#or directly install using setup.py
python3 setup.py insall --user

Usage

To call the model, an object must be created first using con2020.Model(), where the default model parameters, model equations used or coordinate systems of input and output can be altered using keywords, e.g:

import con2020

#initialize a model object with default parameters
def_model = con2020.Model()

#initialize a model which uses spherical polar coordinates for input and output
sph_model = con2020.Model(CartesianIn=False,CartesianOut=False)

#initialize a model with custom parameters (longhand)
cust_model0 = con2020.Model(mu_i_div2__current_parameter_nT=150.0,
                           	r0__inner_rj=9.5,
                           	d__cs_half_thickness_rj=3.1)

#equivalently, a custom parameter model (shorthand)
cust_model1 = con2020.Model(mu_i=150.0,r0=9.5,d=3.1)

Once a model object is initialized, the model field can be obtained by calling the member function Field() and supplying input coordinates as three scalars, or three arrays (all of which are in right-handed System III), e.g.:

#Example 1: the model at a single Cartesian position (all in Rj)
x = 5.0
y = 10.0
z = 6.0
Bcart = def_model.Field(x,y,z)
Result:
Bxyz=[15.57977074, 36.88229249, 63.02051163] nT
Calculated using the default con2020 model keywords and the hybrid approximation.

#Example 2: the model at an array of positions of spherical polar coordinates
r = np.array([10.0,20.0])					#radial distance in Rj
theta = np.array([30.0,35.0])*np.pi/180.0	#colatitude in radians 
phi = np.array([90.0,95.0])*np.pi/180.0	#east longitude in radians
Bpol = sph_model.Field(r,theta,phi)
Result:
Spherical polar Brtp =[63.32354453 ,31.15790459], [-21.01051861 , -6.86773727], [-3.61151705, -2.72626057] nT
Cartesian       Bxyz =[3.61151705, 1.6486016], [13.4661294,  12.43672946], [65.34505753, 29.46223351] nT
Calculated using the default con2020 model keywords and the hybrid approximation.

The output will be a numpy.ndarray with a shape (n,3), where n is the number of input coordinates, B[:,0] corresponds to either Bx or Br; B[:,1] corresponds to By or Btheta; and B[:,2] corresponds to either Bz or Bphi. A full list of model keywords is shown below:

Keyword (long) Keyword (short) Default Value Description
mu_i_div2__current_parameter_nT mu_i 139.6* Current sheet current density in nT.
i_rho__radial_current_MA i_rho 16.7* Radial current intensity in MA from Connerney et al 2020.
r0__inner_rj r0 7.8 Inner edge of the current sheet in Rj.
r1__outer_rj r1 51.4 Outer edge of the current sheet in Rj.
d__cs_half_thickness_rj d 3.6 Current sheet half thickness in Rj.
xt__cs_tilt_degs xt 9.3 Tilt angle of the current sheet away from the SIII z-axis in degrees.
xp__cs_rhs_azimuthal_angle_of_tilt_degs xp 155.8 (Right-Handed) Longitude towards which the current sheet is tilted in degrees.
equation_type 'hybrid' Which method to use, can be:
'analytic' - use only the analytical equations
'integral' - numerically integrate the equations
'hybrid' - a combination of analytical and integration (default)
error_check True Check errors on inputs the the Field() member function - set to False at your own risk for a slight speedup.
CartesianIn True If True (default) then the input coordinates are expected to be in Cartesian right-handed SIII coordinates. If False then right-handed spherical polar SIII coordinates will be expected.
CartesianOut True If True the output magnetic field components will be in right-handed Cartesian SIII coordinates. If False then the output will be such that it has radial, meridional and azimuthal components.
azfunc 'connerney' Which model to use for the azimuthal component of the magnetodisc current:
'connerney' - use Connerney et al., 2020 model
'lmic' - use the Leicester magnetosphere-ionosphere coupling (L-MIC) model (Cowley et al., 2005, 2008).
DeltaRho 1.0 Scale length over which smoothing is done in the $\rho$ direction RJ.
DeltaZ 0.1 Scale length over which smoothing is done in the $z$ direction.
g 417659.3836476442 §Magnetic dipole parameter, nT
wO_open 0.1 §Ratio of plasma to Jupiter's angular velocity on open field lines.
wO_om 0.35 §Ratio of plasma to Jupiter's angular velocity in the outer magnetosphere.
thetamm 16.1 §Colatitude of the centre of the middle magnetosphere, where the plasma transitions from corotating to sub-corotating, °.
dthetamm 0.5 §Colatitude range over which the transition from inner to outer magnetosphere occurs, °.
thetaoc 10.716 §Colatitude of the centre of the open-closed field line boundary, °.
dthetaoc 0.125 §Colatitude range of the open-closed field line boundary, °.

*Default current densities used here are averages provided in Connerney et al., 2020 (see Figure 6), but can vary from one pass to the next. Table 2 of Connerney et al., 2020 provides a list of both current densities for 23 out of the first 24 perijoves of Juno.

This is only applicable for the Connerney et al., 2020 model for $B_{\phi}$.

§ These parameters are used to configure the L-MIC model for $B_{\phi}$.

The con2020.Test() function should produce the following:

References

  • Connerney, J. E. P., Timmins, S., Herceg, M., & Joergensen, J. L. (2020). A Jovian magnetodisc model for the Juno era. Journal of Geophysical Research: Space Physics, 125, e2020JA028138. https://doi.org/10.1029/2020JA028138
  • Connerney, J. E. P., Acuña, M. H., and Ness, N. F. (1981), Modeling the Jovian current sheet and inner magnetosphere, J. Geophys. Res., 86( A10), 8370– 8384, doi:10.1029/JA086iA10p08370.
  • Cowley, S. W. H., Alexeev, I. I., Belenkaya, E. S., Bunce, E. J., Cottis, C. E., Kalegaev, V. V., Nichols, J. D., Prangé, R., and Wilson, F. J. (2005), A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter's polar ionosphere, J. Geophys. Res., 110, A11209, doi:10.1029/2005JA011237.
  • Cowley, S. W. H., Deason, A. J., and Bunce, E. J.: Axi-symmetric models of auroral current systems in Jupiter's magnetosphere with predictions for the Juno mission, Ann. Geophys., 26, 4051–4074, https://doi.org/10.5194/angeo-26-4051-2008, 2008.
  • Edwards T.M., Bunce E.J., Cowley S.W.H. (2001), A note on the vector potential of Connerney et al.'s model of the equatorial current sheet in Jupiter's magnetosphere, *Planetary and Space Science,*49, 1115-1123,https://doi.org/10.1016/S0032-0633(00)00164-1.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

con2020-1.2.1-py3-none-any.whl (7.2 MB view details)

Uploaded Python 3

File details

Details for the file con2020-1.2.1-py3-none-any.whl.

File metadata

  • Download URL: con2020-1.2.1-py3-none-any.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.9.6 requests/2.22.0 setuptools/39.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/3.6.8

File hashes

Hashes for con2020-1.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c92db1523e40de07bd072f106740ac4647d55b340c90c5a97f9311ad92a6b49e
MD5 ac0b81c1875f522f2f53a0103c2b8404
BLAKE2b-256 a7c9c44d3d9fa8264c2b4c8ae8ffc0b2f8381ece391a1729aa86625ea619462f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page