Skip to main content

Formal Concept Analysis with Python

Project description

Latest PyPI Version License Supported Python Versions Format

Travis Codecov Readthedocs stable Readthedocs latest

Concepts is a simple Python implementation of Formal Concept Analysis (FCA).

FCA provides a mathematical model for describing a set of objects (e.g. King Arthur, Sir Robin, and the holy grail) with a set of properties (e.g. human, knight, king, and mysterious) which each of the objects either has or not. A table called formal context defines which objects have a given property and vice versa which properties a given object has.

Installation

This package runs under Python 2.7 and 3.5+, use pip to install:

$ pip install concepts

This will also install the bitsets and graphviz packages from PyPI as required dependencies.

Rendering lattice graphs depends on the Graphviz software. Make sure its dot executable is on your systems’ path.

Quickstart

Create a formal context defining which object has which property, e.g. from a simple ASCII-art style cross-table with object rows and property columns (alternatively load a CXT or CSV file):

>>> from concepts import Context

>>> c = Context.fromstring('''
...            |human|knight|king |mysterious|
... King Arthur|  X  |  X   |  X  |          |
... Sir Robin  |  X  |  X   |     |          |
... holy grail |     |      |     |     X    |
... ''')
>>> c  # doctest: +ELLIPSIS
<Context object mapping 3 objects to 4 properties [dae7402a] at 0x...>

Query common properties of objects or common objects of properties (derivation):

>>> c.intension(['King Arthur', 'Sir Robin'])
('human', 'knight')

>>> c.extension(['knight', 'mysterious'])
()

Get the closest matching objects-properties pair of objects or properties (formal concepts):

>>> c['Sir Robin', 'holy grail']
(('King Arthur', 'Sir Robin', 'holy grail'), ())

>>> c['king',]
(('King Arthur',), ('human', 'knight', 'king'))

Iterate over the concept lattice of all objects-properties pairs:

>>> for extent, intent in c.lattice:
...     print('%r %r' % (extent, intent))
() ('human', 'knight', 'king', 'mysterious')
('King Arthur',) ('human', 'knight', 'king')
('holy grail',) ('mysterious',)
('King Arthur', 'Sir Robin') ('human', 'knight')
('King Arthur', 'Sir Robin', 'holy grail') ()

Make a Graphviz visualization of the lattice (use .graphviz(view=True) to directly render it and display the resulting PDF):

>>> c.lattice.graphviz()  # doctest: +ELLIPSIS
<graphviz.dot.Digraph object at 0x...>
https://raw.github.com/xflr6/concepts/master/docs/holy-grail.png

Further reading

The generation of the concept lattice is based on the algorithm from C. Lindig. Fast Concept Analysis. In Gerhard Stumme, editors, Working with Conceptual Structures - Contributions to ICCS 2000, Shaker Verlag, Aachen, Germany, 2000.

The included example CXT files are taken from Uta Priss’ FCA homepage

See also

The implementation is based on these Python packages:

  • bitsets – Ordered subsets over a predefined domain

  • graphviz – Simple Python interface for Graphviz

The following package is build on top of concepts:

  • features – Feature set algebra for linguistics

If you want to apply FCA to bigger data sets, you might want to consider other implementations based on more sophisticated algorithms like In-Close or Fcbo.

License

Concepts is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

concepts-0.9.2.zip (240.5 kB view details)

Uploaded Source

Built Distribution

concepts-0.9.2-py2.py3-none-any.whl (31.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file concepts-0.9.2.zip.

File metadata

  • Download URL: concepts-0.9.2.zip
  • Upload date:
  • Size: 240.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.2

File hashes

Hashes for concepts-0.9.2.zip
Algorithm Hash digest
SHA256 8bbfa9ffdf89cc6e13c79a902474086797500b31d043604aa1d63bfe5faada2c
MD5 89c3f4f1cafb623f2f1781c49d004cf8
BLAKE2b-256 3110c6324c005e0eecacc806f142f3e4a64c42edebe879e3842d2a19be7033b7

See more details on using hashes here.

File details

Details for the file concepts-0.9.2-py2.py3-none-any.whl.

File metadata

  • Download URL: concepts-0.9.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 31.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.2

File hashes

Hashes for concepts-0.9.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 4acfb679124f9c58216febf9345c4dbd682f93d8e48f43ce35070c9a8e78db2d
MD5 f4127c2f8d5946fbf4725ea7e6814738
BLAKE2b-256 3cde1a2bf3f0f0da48d9e9cc746e550fd7169507fba205184b1af7e940163623

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page