Skip to main content

CONCISE (COnvolutional Neural for CIS-regulatory Elements) is a model for predicting PTR features like mRNA half-life from cis-regulatory elements using deep learning.

Project description

===============================
CONCISE (COnvolutional neural Network for CIS-regulatory Elements)
===============================


.. image:: https://img.shields.io/pypi/v/concise.svg
:target: https://pypi.python.org/pypi/concise

.. image:: https://img.shields.io/travis/Avsecz/concise.svg
:target: https://travis-ci.org/Avsecz/concise

.. image:: https://readthedocs.org/projects/concise-bio/badge/?version=latest
:target: https://concise-bio.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status

..
.. image:: https://pyup.io/repos/github/avsecz/concise/shield.svg
:target: https://pyup.io/repos/github/avsecz/concise/
:alt: Updates


CONCISE (COnvolutional neural Network for CIS-regulatory Elements) is a model for predicting quatitative outcome (like mRNA half-life) from cis-regulatory sequence using deep learning.

* Developed by the Gagneur Lab (computational biology): http://www.gagneurlab.in.tum.de
* Free software: MIT license
* Documentation: https://concise-bio.readthedocs.io

Features
--------

* Architecture:
::

Sequence +-> Conv -> reLU -> average pool +-> y <-+ Additional linear features
^
|
Positional bias +-----+


* Very simple API
* Serializing the model to JSON
- allows to analyze the results in any langugage of choice
* Helper function for hyper-parameter random search
* CONCISE uses TensorFlow at its core and is hence able of using GPU computing

Installation
------------

After installing the following prerequisites:

1. Python (3.4 or 3.5) with pip (see `Python installation guide`_ and `pip documentation`_)
2. TensorFlow python package (see `TensorFlow installation guide`_ or `Installing Tensorflow on AWS GPU-instance`_)

install CONCISE using pip:

::

pip install concise


.. _pip documentation: https://pip.pypa.io
.. _Python installation guide: http://docs.python-guide.org/en/latest/starting/installation/
.. _TensorFlow installation guide: https://www.tensorflow.org/versions/r0.10/get_started/os_setup.html
.. _Installing Tensorflow on AWS GPU-instance: http://max-likelihood.com/2016/06/18/aws-tensorflow-setup/

Getting Started
---------------

.. code-block:: python

import pandas as pd
import concise

# read-in and prepare the data
dt = pd.read_csv("./data/pombe_half-life_UTR3.csv")

X_feat, X_seq, y, id_vec = concise.prepare_data(dt,
features=["UTR3_length", "UTR5_length"],
response="hlt",
sequence="seq",
id_column="ID",
seq_align="end",
trim_seq_len=500,
)

######
# Train CONCISE
######

# initialize CONCISE
co = concise.Concise(motif_length = 9, n_motifs = 2, init_motifs = ("TATTTAT", "TTAATGA"))

# train:
# - on a GPU if tensorflow is compiled with GPU support
# - on a CPU with 5 cores otherwise
co.train(X_feat[500:], X_seq[500:], y[500:], n_cores = 5)

# predict
co.predict(X_feat[:500], X_seq[:500])

# get fitted weights
co.get_weights()

# save/load from a file
co.save("./Concise.json")
co2 = Concise.load("./Concise.json")

######
# Train CONCISE in 5-fold cross-validation
######

# intialize
co3 = concise.Concise(motif_length = 9, n_motifs = 2, init_motifs = ("TATTTAT", "TTAATGA"))
cocv = concise.ConciseCV(concise_object = co3)

# train
cocv.train(X_feat, X_seq, y, id_vec,
n_folds=5, n_cores=3, train_global_model=True)

# out-of-fold prediction
cocv.get_CV_prediction()

# save/load from a file
cocv.save("./Concise.json")
cocv2 = ConciseCV.load("./Concise.json")



Where to go from here:
----------------------

* See the example file `<scripts/example-workflow.py>`_
* Read the API Documenation https://concise-bio.readthedocs.io/en/latest/documentation.html


=======
History
=======

0.1.0 (2016-09-15)
------------------

* First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

concise-0.1.0.tar.gz (731.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

concise-0.1.0-py2.py3-none-any.whl (24.7 kB view details)

Uploaded Python 2Python 3

File details

Details for the file concise-0.1.0.tar.gz.

File metadata

  • Download URL: concise-0.1.0.tar.gz
  • Upload date:
  • Size: 731.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for concise-0.1.0.tar.gz
Algorithm Hash digest
SHA256 0b4667faa91d2e81aa0009fdbbfd6ef55a84cc563027f8791484243cf4d21d50
MD5 3d99ae74c0f411347120b3c70c7c0dd1
BLAKE2b-256 de8192efc820059d22dc81283a93a65426c771ae8597a8349e464721996f5386

See more details on using hashes here.

File details

Details for the file concise-0.1.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for concise-0.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d72c889c1c8f02da7da0fdfb035979865622e47c28612b07fe8b057896c5eb1c
MD5 d312a67ce72df9f6e7b541d50fb94459
BLAKE2b-256 c97da94adfc941aadbaa055d81fc830f2bcb25229b34ffdeef38db0f42fe1e17

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page