Skip to main content

CONCISE (COnvolutional Neural for CIS-regulatory Elements) is a model for predicting PTR features like mRNA half-life from cis-regulatory elements using deep learning.

Project description

CONCISE

https://img.shields.io/pypi/v/concise.svg https://img.shields.io/pypi/pyversions/Concise.svg https://api.travis-ci.org/Avsecz/concise.svg Documentation Status

CONCISE (COnvolutional neural Network for CIS-regulatory Elements) is a model for predicting any quatitative outcome (say mRNA half-life) from cis-regulatory sequence using deep learning.

https://github.com/Avsecz/concise/blob/master/concise-figure1.png

Features

  • Very simple API

  • Serializing the model to JSON - allows to analyze the results in any langugage of choice

  • Helper function for hyper-parameter random search

  • CONCISE uses TensorFlow at its core and is hence able of using GPU computing

Installation

After installing the following prerequisites:

  1. Python (3.4 or 3.5) with pip (see Python installation guide and pip documentation)

  2. TensorFlow python package (see TensorFlow installation guide or Installing Tensorflow on AWS GPU-instance)

install CONCISE using pip:

pip install concise

Getting Started

import pandas as pd
import concise

# read-in and prepare the data
dt = pd.read_csv("./data/pombe_half-life_UTR3.csv")

X_feat, X_seq, y, id_vec = concise.prepare_data(dt,
                                                features=["UTR3_length", "UTR5_length"],
                                                response="hlt",
                                                sequence="seq",
                                                id_column="ID",
                                                seq_align="end",
                                                trim_seq_len=500,
                                              )

######
# Train CONCISE
######

# initialize CONCISE
co = concise.Concise(motif_length = 9, n_motifs = 2,
                     init_motifs = ("TATTTAT", "TTAATGA"))

# train:
# - on a GPU if tensorflow is compiled with GPU support
# - on a CPU with 5 cores otherwise
co.train(X_feat[500:], X_seq[500:], y[500:], n_cores = 5)

# predict
co.predict(X_feat[:500], X_seq[:500])

# get fitted weights
co.get_weights()

# save/load from a file
co.save("./Concise.json")
co2 = Concise.load("./Concise.json")

######
# Train CONCISE in 5-fold cross-validation
######

# intialize
co3 = concise.Concise(motif_length = 9, n_motifs = 2,
                      init_motifs = ("TATTTAT", "TTAATGA"))

cocv = concise.ConciseCV(concise_object = co3)

# train
cocv.train(X_feat, X_seq, y, id_vec,
           n_folds=5, n_cores=3, train_global_model=True)

# out-of-fold prediction
cocv.get_CV_prediction()

# save/load from a file
cocv.save("./Concise.json")
cocv2 = ConciseCV.load("./Concise.json")

Where to go from here:

History

0.1.0 (2016-09-15)

  • First release on PyPI.

0.1.1 (2016-09-17)

  • Minor documentation changes

  • Renamed some internal variables

0.2.0 (2016-09-21)

  • Introduced new feature: regress_out_feat

  • Major renaming of variables for concistency

0.3.0 (2016-11-30)

  • Added L-BFGS optimizer in addition to Adam. Use optimizer=”lbfgs” in Concise()

0.3.1 (2016-11-30)

  • New function: best_kmers for motif efficient initialization

0.4.0 (2017-02-07)

  • refactor: Removed regress_out feature

  • feature: multi-task learning

0.4.1 (2017-02-09)

  • bugfix: multi-task learning

0.4.2 (2017-02-09)

  • same as 0.4.1 (pypi upload failed for 0.4.1)

0.4.3 (2017-02-09)

  • feat: added early_stop_patience argument

0.4.4 (2017-02-10)

  • fix: When X_feat had 0 columns, loading its weights from file was failing.

  • feat: When training the global model in ConciseCV, use the average number of epochs yielding the best validation-set accuracy.

0.4.5 (2017-03-13)

  • fix: Update tensorflow function (tf.op_scope -> tf.name_scope, initialize_all_variables -> tf.global_variables_initializer)

  • fix: tf.mul -> tf.multiply

  • feat: allow NaN’s in y_train

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

concise-0.4.5.tar.gz (744.7 kB view details)

Uploaded Source

File details

Details for the file concise-0.4.5.tar.gz.

File metadata

  • Download URL: concise-0.4.5.tar.gz
  • Upload date:
  • Size: 744.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for concise-0.4.5.tar.gz
Algorithm Hash digest
SHA256 11a71be8aef0b88287e6b5a7c73e9ebe78c22ceee7620ec1ee41de205c23dd27
MD5 905c70bb0b65d66cdfb83347ab6fd197
BLAKE2b-256 dbd55b48ad1634d5bcd0162af5975add97febce2323442a314a88b9b220f4bb4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page