Skip to main content

Lockfiles for conda

Project description

conda-lock

Conda lock is a lightweight library that can be used to generate fully reproducible lock files for conda environments.

It does this by performing a conda solve for each platform you desire a lockfile for.

This also has the added benefit of acting as an external pre-solve for conda as the lockfiles it generates results in the conda solver not being invoked when installing the packages from the generated lockfile.

Why?

Conda environment.yml files are very useful for defining desired environments but there are times when we want to be able to EXACTLY reproduce an environment by just installing and downloading the packages needed.

This is particularly handy in the context of a gitops style setup where you use conda to provision environments in various places.

Installation

pip install conda-lock
conda install -c conda-forge conda-lock

Basic usage

# generate the lockfiles
conda-lock -f environment.yml -p osx-64 -p linux-64

# create an environment from the lockfile
conda-lock install [-p {prefix}|-n {name}] conda-linux-64.lock

# alternatively, use conda command directly
conda create -n my-locked-env --file conda-linux-64.lock

Advanced usage

File naming

By default conda-lock will name files as "conda-{platform}.lock".

If you want to override that call conda-lock as follows.

conda-lock --filename-template "specific-{platform}.conda.lock"

Compound specification

Conda-lock will build a spec list from several files if requested.

conda-lock -f base.yml -f specific.yml -p linux-64 --filename-template "specific-{platform}.lock"

In this case all dependencies are combined, and the first non-empty value for channels is used as the final specification.

This works for all supported file types.

channel overrides

You can override the channels that are used by conda-lock in case you need to override the ones specified in an environment.yml

conda-lock -c conda-forge -p linux-64

--dev-dependencies/--no-dev-dependencies

By default conda-lock will include dev dependencies in the specification of the lock (if the files that the lock is being built from support them). This can be disabled easily

conda-lock --no-dev-dependencies -f ./recipe/meta.yaml

--check-input-hash

Under some situation you may want to run conda lock in some kind of automated way (eg as a precommit) and want to not need to regenerate the lockfiles if the underlying input specification for that particular lock as not changed.

conda-lock --check-input-hash -p linux-64

When the input_hash of the input files, channels match those present in a given lockfile, that lockfile will not be regenerated.

--strip-auth, --auth and --auth-file

By default conda-lock will leave basic auth credentials for private conda channels in the lock file. If you wish to strip authentication from the file, provide the --strip-auth argument.

conda-lock --strip-auth -f environment.yml

In order to conda-lock install a lock file with its basic auth credentials stripped, you will need to create an authentication file in .json format like this:

{
  "domain": "username:password"
}

You can provide the authentication either as string through --auth or as a filepath through --auth-file.

conda-lock install --auth-file auth.json conda-linux-64.lock

--virtual-package-spec

Conda makes use of virtual packages that are available at runtime to gate dependency on system features. Due to these not generally existing on your local execution platform conda-lock will inject them into the solution environment with a reasonable guess at what a default system configuration should be.

If you want to override which virtual packages are injected you can create a file like

# virtual-packages.yml
subdirs:
  linux-64:
    packages:
      __glibc: 2.17
      __cuda: 11.4
  win-64:
    packages:
      __cuda: 11.4

conda-lock will automatically use a virtual-packages.yml it finds in the the current working directory. Alternatively one can be specified explicitly via the flag.

conda lock --virtual-package-spec virtual-packages-cuda.yml -p linux-64

Input hash stability

Virtual packages take part in the input hash so if you build an environment with a different set of virtual packages the input hash will change. Additionally the default set of virtual packages may be augmented in future versions of conda-lock. If you desire very stable input hashes we recommend creating a virtual-packages.yml file to lock down the virtual packages considered.

⚠️ in conjunction with micromamba

Micromamba does not presently support some of the overrides to remove all discovered virtual packages, consequently the set of virtual packages available at solve time may be larger than those specified in your specification.

Supported file sources

Conda lock supports more than just environment.yml specifications!

Additionally conda-lock supports meta.yaml (conda-build) and pyproject.toml ( flit and poetry based). These do come with some gotchas but are generally good enough for the 90% use-case.

meta.yaml

Conda-lock will attempt to make an educated guess at the desired environment spec in a meta.yaml. This is not guaranteed to work for complex recipes with many selectors and outputs. For multi-output recipes, conda-lock will fuse all the dependencies together. If that doesn't work for your case fall back to specifying the specification as an environment.yml

Since a meta.yaml doesn't contain channel information we make use of the following extra key to retrieve channels

# meta.yaml

extra:
  channels:
    - conda-forge
    - defaults

pyproject.toml

Since pyproject.toml files are commonly used by python packages it can be desirable to create a lock file directly from those dependencies to single-source a package's dependencies. This makes use of some conda-forge infrastructure (pypi-mapping) to do a lookup of the PyPI package name to a corresponding conda package name (e.g. docker -> docker-py). In cases where there exists no lookup for the package it assumes that the PyPI name, and the conda name are the same.

Channels

# pyproject.toml

[tool.conda-lock]
channels = [
    'conda-forge', 'defaults'
]

Extras

If your pyproject.toml file contains optional dependencies/extras these can be referred to by using the --extras flag

# pyproject.toml

[tool.poetry.dependencies]
mandatory = "^1.0"
psycopg2 = { version = "^2.7", optional = true }
mysqlclient = { version = "^1.3", optional = true }

[tool.poetry.extras]
mysql = ["mysqlclient"]
pgsql = ["psycopg2"]

These can be referened as follows

conda-lock --extra mysql --extra pgsql -f pyproject.toml

When generating lockfiles that make use of extras it is recommended to make use of --filename-template covered here.

Extra conda dependencies

Since in a pyproject.toml all the definitions are python dependencies if you need to specify some non-python dependencies as well this can be accomplished by adding the following sections to the pyproject.toml

# pyproject.toml

[tool.conda-lock.dependencies]
sqlite = ">=3.34"

Dockerfile example

In order to use conda-lock in a docker-style context you want to add the lockfile to the docker container. In order to refresh the lock file just run conda-lock again.

Given a file tree like

  Dockerfile
  environment.yaml
* conda-linux-64.lock

You want a dockerfile that is structured something similar to this

# Dockerfile

# Build container
FROM continuumio/miniconda:latest as conda

ADD conda-linux-64.lock /locks/conda-linux-64.lock
RUN conda create -p /opt/env --copy --file /locks/conda-linux-64.lock

# Primary container

FROM gcr.io/distroless/base-debian10

COPY --from=conda /opt/env /opt/env

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conda_lock-0.13.1.tar.gz (68.9 kB view details)

Uploaded Source

Built Distribution

conda_lock-0.13.1-py3-none-any.whl (25.7 kB view details)

Uploaded Python 3

File details

Details for the file conda_lock-0.13.1.tar.gz.

File metadata

  • Download URL: conda_lock-0.13.1.tar.gz
  • Upload date:
  • Size: 68.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for conda_lock-0.13.1.tar.gz
Algorithm Hash digest
SHA256 be38858f6f5f97912113b365a3be9ed370fa37bb37ced6942db4b8c987437e6b
MD5 1e772a518d58c48fb6d0d0c4e403db7e
BLAKE2b-256 2026fd0cec97add3aed3c77554d699622f0686f918c0f927f29ad848f6ffbe6d

See more details on using hashes here.

Provenance

File details

Details for the file conda_lock-0.13.1-py3-none-any.whl.

File metadata

  • Download URL: conda_lock-0.13.1-py3-none-any.whl
  • Upload date:
  • Size: 25.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for conda_lock-0.13.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e61018172daee2e6faf5dc506794b1faaa37abb970e7364d5e39e4ac872545e0
MD5 7578790e66f9bd8adb82f48e2b7e151a
BLAKE2b-256 1b7a2c525e998a853e315f07098f5179fd7eaf2f200ddee4ad785c239f506dff

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page