Skip to main content

Convert data from hexagonal pixels to cartesian grid

Project description

Hexagonal-cartesian grid conversion

This is an implementation of (part of) the algorithm described in Condat et al. Reversible, fast, and high-quality grid conversions, IEEE Transactions on Image Processing, vol. 17, no. 5, pp. 679-693, May 2008. It transforms data sampled on a hexagonal grid, such as an X-ray detector with hexagonal pixels, into a conventional cartesian lattice.

Specifically, it implements what that paper describes as a Type II fractional delay filter, with N=2.

This package is based on code written by Andreas Scherz and Rafael Gort.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

condat_gridconv-0.2.1.tar.gz (4.5 kB view details)

Uploaded Source

Built Distributions

condat_gridconv-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (96.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

condat_gridconv-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (100.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

condat_gridconv-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (100.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

condat_gridconv-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (101.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

condat_gridconv-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (101.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file condat_gridconv-0.2.1.tar.gz.

File metadata

  • Download URL: condat_gridconv-0.2.1.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for condat_gridconv-0.2.1.tar.gz
Algorithm Hash digest
SHA256 8c198019f5e52b102aea270fdfb961ce21297ef763cb60cc16204b3ed55c14bd
MD5 a72955dc56e763bac8c4d79bca8bc45c
BLAKE2b-256 1cc972f4f3883bb1b278393311ecc9f601146e89b957bb09da279a433ebc182f

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c4faec0c5d967108e663ec47c39f5d2ad50b820548a59dddcfae68e6a277e7c
MD5 f24d66e937903b59e449d718944e499a
BLAKE2b-256 50a0cf19211f59c0074c6eec17e61c39be1a0a74b1c8aeb5f75a1ac58e9f0f42

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2248fbae80d4b5fb0fdbbc552c1c7d4d3c0a2340f55f8cc89cd125e0d876a79c
MD5 06586a003f1561928ba90ad325902e67
BLAKE2b-256 bb2df8d5c8d8daaba5befbb6f7327d32542d8390200481833a2a2376538b2e22

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ee7f1acac3d1b0102e891689674e8f8f0866ef0ab19bcef32eb5c8a85bd99b7
MD5 0ed4ecc2e1101104aee55011304b2edc
BLAKE2b-256 4f5c768ec12b4d4f24c59778c21ccf4497171a4554e2e2aae0a1c69d22f8d0cb

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4cfd5a45340053b071d3001da1721084071e96056e3159203c210076c133b781
MD5 d02fa86bd4162f21befbfe2abea6ebba
BLAKE2b-256 d1a30e560a9728a330158ed440db363ed494241a4a15b1c265be07a537a56b1a

See more details on using hashes here.

File details

Details for the file condat_gridconv-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for condat_gridconv-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51cc82cf2b640d5f63a6372df6e755ee7a9382951ecaa8ca58d2b2b9c070eff4
MD5 14efd3c5ba0cef71c1e1a68a21c4b71e
BLAKE2b-256 1767cabe94ae7a7b3aa5e6fe3076dc4f316b42fc85432c409672c267bc697060

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page