Skip to main content

Netflix Conductor Python SDK

Project description

Conductor Python

Software Development Kit for Netflix Conductor, written on and providing support for Python.

Quick Guide

  1. Create a virtual environment

    $ virtualenv conductor
    $ source conductor/bin/activate
    $ python3 -m pip list
    Package    Version
    ---------- -------
    pip        22.0.3
    setuptools 60.6.0
    wheel      0.37.1
    
  2. Install latest version of conductor-python from pypi

    $ python3 -m pip install conductor-python
    Collecting conductor-python
    Collecting certifi>=14.05.14
    Collecting urllib3>=1.15.1
    Requirement already satisfied: setuptools>=21.0.0 in ./conductor/lib/python3.8/site-packages (from conductor-python) (60.6.0)
    Collecting six>=1.10
    Installing collected packages: certifi, urllib3, six, conductor-python
    Successfully installed certifi-2021.10.8 conductor-python-1.0.7 six-1.16.0 urllib3-1.26.8
    
  3. Create a worker capable of executing a Task. Example:

    from conductor.client.http.models.task import Task
    from conductor.client.http.models.task_result import TaskResult
    from conductor.client.http.models.task_result_status import TaskResultStatus
    from conductor.client.worker.worker_interface import WorkerInterface
    
    
    class SimplePythonWorker(WorkerInterface):
        def execute(self, task: Task) -> TaskResult:
            task_result = self.get_task_result_from_task(task)
            task_result.add_output_data('key', 'value')
            task_result.status = TaskResultStatus.COMPLETED
            return task_result
    
    • The add_output_data is the most relevant part, since you can store information in a dictionary, which will be sent within TaskResult as your execution response to Conductor
  4. Create a main method to start polling tasks to execute with your worker. Example:

    from conductor.client.automator.task_handler import TaskHandler
    from conductor.client.configuration.configuration import Configuration
    from conductor.client.worker.sample.faulty_execution_worker import FaultyExecutionWorker
    from conductor.client.worker.sample.simple_python_worker import SimplePythonWorker
    
    
    def main():
        configuration = Configuration(debug=True)
        task_definition_name = 'python_task_example'
        workers = [
            FaultyExecutionWorker(task_definition_name),
            SimplePythonWorker(task_definition_name)
        ]
        with TaskHandler(workers, configuration) as task_handler:
            task_handler.start_processes()
            task_handler.join_processes()
    
    
    if __name__ == '__main__':
        main()
    
    • This example contains two workers, each with a different execution method, capable of running the same task_definition_name
  5. Now that you have implemented the example, you can start the Conductor server locally:

    1. Clone Netflix Conductor repository:
      $ git clone https://github.com/Netflix/conductor.git
      $ cd conductor/
      
    2. Start the Conductor server:
      /conductor$ ./gradlew bootRun
      
    3. Start Conductor UI:
      /conductor$ cd ui/
      /conductor/ui$ yarn install
      /conductor/ui$ yarn run start
      

    You should be able to access:

  6. Create a Task within Conductor. Example:

    $ curl -X 'POST' \
        'http://localhost:8080/api/metadata/taskdefs' \
        -H 'accept: */*' \
        -H 'Content-Type: application/json' \
        -d '[
        {
          "name": "python_task_example",
          "description": "Python task example",
          "retryCount": 3,
          "retryLogic": "FIXED",
          "retryDelaySeconds": 10,
          "timeoutSeconds": 300,
          "timeoutPolicy": "TIME_OUT_WF",
          "responseTimeoutSeconds": 180,
          "ownerEmail": "example@example.com"
        }
      ]'
    
  7. Create a Workflow within Conductor. Example:

    $ curl -X 'POST' \
        'http://localhost:8080/api/metadata/workflow' \
        -H 'accept: */*' \
        -H 'Content-Type: application/json' \
        -d '{
        "createTime": 1634021619147,
        "updateTime": 1630694890267,
        "name": "workflow_with_python_task_example",
        "description": "Workflow with Python Task example",
        "version": 1,
        "tasks": [
          {
            "name": "python_task_example",
            "taskReferenceName": "python_task_example_ref_1",
            "inputParameters": {},
            "type": "SIMPLE"
          }
        ],
        "inputParameters": [],
        "outputParameters": {
          "workerOutput": "${python_task_example_ref_1.output}"
        },
        "schemaVersion": 2,
        "restartable": true,
        "ownerEmail": "example@example.com",
        "timeoutPolicy": "ALERT_ONLY",
        "timeoutSeconds": 0
      }'
    
  8. Start a new workflow:

    $ curl -X 'POST' \
        'http://localhost:8080/api/workflow/workflow_with_python_task_example' \
        -H 'accept: text/plain' \
        -H 'Content-Type: application/json' \
        -d '{}'
    

    You should receive a Workflow ID at the Response body

    • Workflow ID example: 8ff0bc06-4413-4c94-b27a-b3210412a914

    Now you must be able to see its execution through the UI.

    • Example: http://localhost:5000/execution/8ff0bc06-4413-4c94-b27a-b3210412a914
  9. Run your Python file with the main method

Unit Tests

Simple validation

/conductor-python/src$ python3 -m unittest -v
test_execute_task (tst.automator.test_task_runner.TestTaskRunner) ... ok
test_execute_task_with_faulty_execution_worker (tst.automator.test_task_runner.TestTaskRunner) ... ok
test_execute_task_with_invalid_task (tst.automator.test_task_runner.TestTaskRunner) ... ok

----------------------------------------------------------------------
Ran 3 tests in 0.001s

OK

Run with code coverage

/conductor-python/src$ python3 -m coverage run --source=conductor/ -m unittest

Report:

/conductor-python/src$ python3 -m coverage report

Visual coverage results:

/conductor-python/src$ python3 -m coverage html

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conductor-python-1.0.15.tar.gz (62.2 kB view details)

Uploaded Source

Built Distribution

conductor_python-1.0.15-py3-none-any.whl (101.7 kB view details)

Uploaded Python 3

File details

Details for the file conductor-python-1.0.15.tar.gz.

File metadata

  • Download URL: conductor-python-1.0.15.tar.gz
  • Upload date:
  • Size: 62.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for conductor-python-1.0.15.tar.gz
Algorithm Hash digest
SHA256 58f295aff961171124a94780205c96b3d386b0809a49bd6b57cfca9936de723b
MD5 0b77e5f0eef400fc2b6dc729aec1c634
BLAKE2b-256 fd067cce869369a5604e2153cfc56a944fb9556dd8ae2d0044ed551be789aca8

See more details on using hashes here.

File details

Details for the file conductor_python-1.0.15-py3-none-any.whl.

File metadata

  • Download URL: conductor_python-1.0.15-py3-none-any.whl
  • Upload date:
  • Size: 101.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for conductor_python-1.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 4c7b966ee85c55f861962f2cbe42550d69110fee7b2118810242bab6208c3d73
MD5 7ac1bda39c33ec21f1d496e5a98089a9
BLAKE2b-256 66af4534d95b026d5bf74a52f11aa29279f0ad6531cd1e2e8a74091e99052a50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page