Skip to main content

Netflix Conductor Python SDK

Project description

Conductor Python

Software Development Kit for Netflix Conductor, written on and providing support for Python.

Quick Guide

  1. Create a virtual environment
    $ virtualenv conductor
    $ source conductor/bin/activate
    $ python3 -m pip list
    Package    Version
    ---------- -------
    pip        22.0.3
    setuptools 60.6.0
    wheel      0.37.1
    
  2. Install latest version of conductor-python from pypi
    $ python3 -m pip install conductor-python
    Collecting conductor-python
    Collecting certifi>=14.05.14
    Collecting urllib3>=1.15.1
    Requirement already satisfied: setuptools>=21.0.0 in ./conductor/lib/python3.8/site-packages (from conductor-python) (60.6.0)
    Collecting six>=1.10
    Installing collected packages: certifi, urllib3, six, conductor-python
    Successfully installed certifi-2021.10.8 conductor-python-1.0.7 six-1.16.0 urllib3-1.26.8
    
  3. Create a worker capable of executing a Task. Example:
    from conductor.client.http.models.task import Task
    from conductor.client.http.models.task_result import TaskResult
    from conductor.client.http.models.task_result_status import TaskResultStatus
    from conductor.client.worker.worker_interface import WorkerInterface
    
    
    class SimplePythonWorker(WorkerInterface):
        def execute(self, task: Task) -> TaskResult:
            task_result = self.get_task_result_from_task(task)
            task_result.add_output_data('key', 'value')
            task_result.status = TaskResultStatus.COMPLETED
            return task_result
    
    • The add_output_data is the most relevant part, since you can store information in a dictionary, which will be sent within TaskResult as your execution response to Conductor
  4. Create a main method to start polling tasks to execute with your worker. Example:
    from conductor.client.automator.task_handler import TaskHandler
    from conductor.client.example.worker.cpp.simple_cpp_worker import SimpleCppWorker
    from conductor.client.example.worker.python.simple_python_worker import SimplePythonWorker
    
    
    def main():
        workers = [
            SimpleCppWorker('cpp_task_example'),
            SimplePythonWorker('python_task_example')
        ]
        with TaskHandler(workers) as task_handler:
            task_handler.start_processes()
            task_handler.join_processes()
    
    
    if __name__ == '__main__':
        main()
    
    • This example contains two workers, each with a different execution method, capable of running the same task_definition_name
    • You can pass a Configuration object to TaskHandler, where you can set:
      • base_url: like localhost:8000/api
      • debug: true/false
      • AuthenticationSettings:
        authentication_settings=AuthenticationSettings(
            key_id='id',
            key_secret='secret'
        )
        
    • You can pass a MetricsSettings object to TaskHandler, where you can set:
      metrics_settings=MetricsSettings(
          directory='.',
          file_name='metrics.log', 
          update_interval=0.1
      )
      
  5. Now that you have implemented the example, you can start the Conductor server locally:
    1. Clone Netflix Conductor repository:
      $ git clone https://github.com/Netflix/conductor.git
      $ cd conductor/
      
    2. Start the Conductor server:
      /conductor$ ./gradlew bootRun
      
    3. Start Conductor UI:
      /conductor$ cd ui/
      /conductor/ui$ yarn install
      /conductor/ui$ yarn run start
      
    You should be able to access:
  6. Create a Task within Conductor:
    {
        "name": "python_task_example",
        "description": "Python task example",
        "retryCount": 3,
        "retryLogic": "FIXED",
        "retryDelaySeconds": 10,
        "timeoutSeconds": 300,
        "timeoutPolicy": "TIME_OUT_WF",
        "responseTimeoutSeconds": 180,
        "ownerEmail": "example@example.com"
    }
    
  7. Create a Workflow within Conductor:
    {
        "name": "workflow_with_python_task_example",
        "description": "Workflow with Python Task example",
        "version": 1,
        "tasks": [
          {
            "name": "python_task_example",
            "taskReferenceName": "python_task_example_ref_1",
            "inputParameters": {},
            "type": "SIMPLE"
          }
        ],
        "inputParameters": [],
        "outputParameters": {
          "workerOutput": "${python_task_example_ref_1.output}"
        },
        "schemaVersion": 2,
        "restartable": true,
        "ownerEmail": "example@example.com",
        "timeoutPolicy": "ALERT_ONLY",
        "timeoutSeconds": 0
    }
    
  8. Start a new workflow of the type you just created
  9. Run your Python file with the main method

C/C++ Support

C++

  1. Export your C++ functions as extern "C":
    • C++ function example (sum two integers)
      #include <iostream>
      
      extern "C" int32_t get_sum(const int32_t A, const int32_t B) {
          return A + B; 
      }
      
  2. Compile and share its library:
    • C++ file name: simple_cpp_lib.cpp
    • Library output name goal: lib.so
      $ g++ -c -fPIC simple_cpp_lib.cpp -o simple_cpp_lib.o
      $ g++ -shared -Wl,-install_name,lib.so -o lib.so simple_cpp_lib.o
      
  3. Create a Task definition:
    {
        "name": "cpp_task_example",
        "description": "C++ Task Example",
        "retryCount": 3,
        "timeoutSeconds": 300,
        "inputKeys": [],
        "outputKeys": [],
        "timeoutPolicy": "TIME_OUT_WF",
        "retryLogic": "FIXED",
        "retryDelaySeconds": 10,
        "responseTimeoutSeconds": 180,
        "inputTemplate": {},
        "rateLimitPerFrequency": 0,
        "rateLimitFrequencyInSeconds": 1,
        "ownerEmail": "example@example.com",
        "backoffScaleFactor": 1
    }
    
  4. Create a Workflow definition:
    {
        "name": "workflow_with_cpp_task_example",
        "description": "Workflow with C++ Task example",
        "version": 1,
        "tasks": [
            {
                "name": "cpp_task_example",
                "taskReferenceName": "cpp_task_example_ref_0",
                "inputParameters": {},
                "type": "SIMPLE",
                "decisionCases": {},
                "defaultCase": [],
                "forkTasks": [],
                "startDelay": 0,
                "joinOn": [],
                "optional": false,
                "defaultExclusiveJoinTask": [],
                "asyncComplete": false,
                "loopOver": []
            }
        ],
        "inputParameters": [],
        "outputParameters": {
            "workerOutput": "${cpp_task_example_ref_0.output}"
        },
        "schemaVersion": 2,
        "restartable": true,
        "workflowStatusListenerEnabled": false,
        "ownerEmail": "example@example.com",
        "timeoutPolicy": "ALERT_ONLY",
        "timeoutSeconds": 0,
        "variables": {},
        "inputTemplate": {}
    }
    
  5. Python Worker example:
    from conductor.client.http.models.task import Task
    from conductor.client.http.models.task_result import TaskResult
    from conductor.client.http.models.task_result_status import TaskResultStatus
    from conductor.client.worker.worker_interface import WorkerInterface
    from ctypes import cdll
    
    
    class CppWrapper:
        def __init__(self, file_path='./lib.so'):
            self.cpp_lib = cdll.LoadLibrary(file_path)
    
        def get_sum(self, X: int, Y: int) -> int:
            return self.cpp_lib.get_sum(X, Y)
    
    
    class SimpleCppWorker(WorkerInterface):
        cpp_wrapper = CppWrapper()
    
        def execute(self, task: Task) -> TaskResult:
            execution_result = self.cpp_wrapper.get_sum(1, 2)
            task_result = self.get_task_result_from_task(task)
            task_result.add_output_data(
                'sum', execution_result
            )
            task_result.status = TaskResultStatus.COMPLETED
            return task_result
    

Unit Tests

Simple validation

/conductor-python/src$ python3 -m unittest -v
test_execute_task (tst.automator.test_task_runner.TestTaskRunner) ... ok
test_execute_task_with_faulty_execution_worker (tst.automator.test_task_runner.TestTaskRunner) ... ok
test_execute_task_with_invalid_task (tst.automator.test_task_runner.TestTaskRunner) ... ok

----------------------------------------------------------------------
Ran 3 tests in 0.001s

OK

Run with code coverage

/conductor-python/src$ python3 -m coverage run --source=conductor/ -m unittest

Report:

/conductor-python/src$ python3 -m coverage report

Visual coverage results:

/conductor-python/src$ python3 -m coverage html

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conductor-python-1.0.19.tar.gz (64.0 kB view details)

Uploaded Source

Built Distribution

conductor_python-1.0.19-py3-none-any.whl (104.9 kB view details)

Uploaded Python 3

File details

Details for the file conductor-python-1.0.19.tar.gz.

File metadata

  • Download URL: conductor-python-1.0.19.tar.gz
  • Upload date:
  • Size: 64.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for conductor-python-1.0.19.tar.gz
Algorithm Hash digest
SHA256 5c4d893836ce96404b900653f5eef82a933fc391bfb52948a5e0b4e7b691647b
MD5 5a4687f0a20100a24989cc70989b2827
BLAKE2b-256 eeec5057a773b79f8cac54b63e4e6407cd9b1c6a425867c6042d138d5bea9c9b

See more details on using hashes here.

File details

Details for the file conductor_python-1.0.19-py3-none-any.whl.

File metadata

  • Download URL: conductor_python-1.0.19-py3-none-any.whl
  • Upload date:
  • Size: 104.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for conductor_python-1.0.19-py3-none-any.whl
Algorithm Hash digest
SHA256 774bb7ff68103ba31bd9d85f09a1cee60b247792f406d1ba270806ff21ed0f37
MD5 09da25ab17b7238b4d9fe7687c52976a
BLAKE2b-256 6888371904c6ee3697cc2bb1da8b40757e66bb66c865afecfe1db8c1a5ad5468

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page