Skip to main content

Netflix Conductor Python SDK

Project description

Netflix Conductor Client SDK

To find out more about Conductor visit: https://github.com/Netflix/conductor

conductor-python repository provides the client SDKs to build Task Workers in Python

Quick Start

Virtual Environment Setup

$ virtualenv conductor
$ source conductor/bin/activate

Install conductor-python package

$ python3 -m pip install conductor-python

Local Environment Setup

$ git clone https://github.com/conductor-sdk/conductor-python.git
$ cd conductor-python/
$ python3 -m pip install .
$ python3 ./src/example/main/main.py

Write worker

Worker examples:

Run workers

main.py example

Running Conductor server locally in 2-minute

More details on how to run Conductor see https://netflix.github.io/conductor/server/

Use the script below to download and start the server locally. The server runs in memory and no data saved upon exit.

export CONDUCTOR_VER=3.5.2
export REPO_URL=https://repo1.maven.org/maven2/com/netflix/conductor/conductor-server
curl $REPO_URL/$CONDUCTOR_VER/conductor-server-$CONDUCTOR_VER-boot.jar \
--output conductor-server-$CONDUCTOR_VER-boot.jar; java -jar conductor-server-$CONDUCTOR_VER-boot.jar 

Execute workers

python ./main.py

Create your first workflow

Now, let's create a new workflow and see your task worker code in execution!

Create a new Task Metadata for the worker you just created

curl -X 'POST' \
  'http://localhost:8080/api/metadata/taskdefs' \
  -H 'accept: */*' \
  -H 'Content-Type: application/json' \
  -d '[{
    "name": "python_task_example",
    "description": "Python task example",
    "retryCount": 3,
    "retryLogic": "FIXED",
    "retryDelaySeconds": 10,
    "timeoutSeconds": 300,
    "timeoutPolicy": "TIME_OUT_WF",
    "responseTimeoutSeconds": 180,
    "ownerEmail": "example@example.com"
}]'

Create a workflow that uses the task

curl -X 'POST' \
  'http://localhost:8080/api/metadata/workflow' \
  -H 'accept: */*' \
  -H 'Content-Type: application/json' \
  -d '{
    "name": "workflow_with_python_task_example",
    "description": "Workflow with Python Task example",
    "version": 1,
    "tasks": [
      {
        "name": "python_task_example",
        "taskReferenceName": "python_task_example_ref_1",
        "inputParameters": {},
        "type": "SIMPLE"
      }
    ],
    "inputParameters": [],
    "outputParameters": {
      "workerOutput": "${python_task_example_ref_1.output}"
    },
    "schemaVersion": 2,
    "restartable": true,
    "ownerEmail": "example@example.com",
    "timeoutPolicy": "ALERT_ONLY",
    "timeoutSeconds": 0
}'

Start a new workflow execution

curl -X 'POST' \
  'http://localhost:8080/api/workflow/workflow_with_python_task_example?priority=0' \
  -H 'accept: text/plain' \
  -H 'Content-Type: application/json' \
  -d '{}'

Worker Configurations

Worker configuration is handled via Configuration object passed when initializing TaskHandler

Server Configurations

  • base_url : Conductor server address. e.g. http://localhost:8000 if running locally
  • debug: true for verbose logging false to display only the errors
  • authentication_settings: see below
  • metrics_settings: see below

Metrics

Conductor uses Prometheus to collect metrics.

  • directory: Directory where to store the metrics
  • file_name: File where the metrics are colleted. e.g. metrics.log
  • update_interval: Time interval in seconds at which to collect metrics into the file

Authentication

Use if your conductor server requires authentication

  • key_id: Key
  • key_secret: Secret for the Key

C/C++ Support

Python is great, but at times you need to call into native C/C++ code. Here is an example how you can do that with Conductor SDK.

1. Export your C++ functions as extern "C":

  • C++ function example (sum two integers)
    #include <iostream>
    
    extern "C" int32_t get_sum(const int32_t A, const int32_t B) {
        return A + B; 
    }
    

2. Compile and share its library:

  • C++ file name: simple_cpp_lib.cpp
  • Library output name goal: lib.so
    $ g++ -c -fPIC simple_cpp_lib.cpp -o simple_cpp_lib.o
    $ g++ -shared -Wl,-install_name,lib.so -o lib.so simple_cpp_lib.o
    

3. Use the C++ library in your python worker

from conductor.client.http.models.task import Task
from conductor.client.http.models.task_result import TaskResult
from conductor.client.http.models.task_result_status import TaskResultStatus
from conductor.client.worker.worker_interface import WorkerInterface
from ctypes import cdll

class CppWrapper:
    def __init__(self, file_path='./lib.so'):
        self.cpp_lib = cdll.LoadLibrary(file_path)

    def get_sum(self, X: int, Y: int) -> int:
        return self.cpp_lib.get_sum(X, Y)


class SimpleCppWorker(WorkerInterface):
    cpp_wrapper = CppWrapper()

    def execute(self, task: Task) -> TaskResult:
        execution_result = self.cpp_wrapper.get_sum(1, 2)
        task_result = self.get_task_result_from_task(task)
        task_result.add_output_data(
            'sum', execution_result
        )
        task_result.status = TaskResultStatus.COMPLETED
        return task_result

Unit Tests

Simple validation

/conductor-python/src$ python3 -m unittest -v

Run with code coverage

/conductor-python/src$ python3 -m coverage run --source=conductor/ -m unittest

Report:

/conductor-python/src$ python3 -m coverage report

Visual coverage results:

/conductor-python/src$ python3 -m coverage html

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conductor-python-1.0.25.tar.gz (63.3 kB view details)

Uploaded Source

Built Distribution

conductor_python-1.0.25-py3-none-any.whl (102.7 kB view details)

Uploaded Python 3

File details

Details for the file conductor-python-1.0.25.tar.gz.

File metadata

  • Download URL: conductor-python-1.0.25.tar.gz
  • Upload date:
  • Size: 63.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.9

File hashes

Hashes for conductor-python-1.0.25.tar.gz
Algorithm Hash digest
SHA256 f53340f75db73e827312fbc590b20df909e05fa7d47f03824dd7ca529d90c5d8
MD5 730a2eb3ee87eed253f6bb63f3040de4
BLAKE2b-256 eb9f71f3d98b5e1041b4973763cfc317ea0a25bba5cfdc01fc1b8df059f7647a

See more details on using hashes here.

File details

Details for the file conductor_python-1.0.25-py3-none-any.whl.

File metadata

File hashes

Hashes for conductor_python-1.0.25-py3-none-any.whl
Algorithm Hash digest
SHA256 cefd348acd91eed27bde893a9d606eb532849da0c95177cce368209b6e0419eb
MD5 9e6135d05ea0bd7d110f42a25d9e1734
BLAKE2b-256 90fb3a6d79007917632eef3d505a578c41535770c3f296ae51ff2a436e6230ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page