Skip to main content

Python client for the Condensation.ai API

Project description

Condy: Python Client for Condensation.ai

A modern, async Python client library for interacting with the Condensation.ai API, providing seamless access to document processing and RAG (Retrieval-Augmented Generation) capabilities.

Features

  • 🚀 Fully async implementation using httpx
  • 📄 Document processing and chunking
  • 🔍 RAG (Retrieval-Augmented Generation) querying
  • 💪 Type hints and modern Python practices
  • ⚡ Efficient markdown processing and page management
  • 🛡️ Comprehensive error handling
  • 📝 Rich document metadata support

Installation

pip install condy

Quick Start

import asyncio
from condy import CondyClient

async def main():
    # Initialize the client
    client = CondyClient(api_key="your-api-key")
    
    # Process a document from URL with metadata
    doc_output = await client.process_document(
        url="https://example.com/document.md",
        filename="document.md",
        file_key="custom-key",
        public_url="https://example.com/document.md"
    )
    
    # Query the document using RAG
    response = await client.query_rag(
        question="What are the key points?",
        document_id=doc_output.document_id
    )
    
    print(response.answer)

asyncio.run(main())

Core Features

Document Processing

# Upload pages directly with metadata
pages = {
    1: "Page 1 content",
    2: "Page 2 content"
}
doc_output = await client.upload_pages(
    pages=pages,
    filename="document.txt",
    file_key="unique-identifier",
    public_url="https://example.com/document.txt"
)

# Or process markdown from URL with metadata
doc_output = await client.process_document(
    url="https://example.com/document.md",
    filename="document.md",
    file_key="doc-123",
    public_url="https://example.com/document.md"
)

RAG Queries

# Query a document
response = await client.query_rag(
    question="What does the document say about X?",
    document_id="doc-id",
    max_chunks=5
)

# Access the response
print(response.answer)
print(response.source_pages)  # List of source pages used

Chunk Management

# Fetch document chunks
chunks = await client.fetch_chunks(
    document_id="doc-id",
    include_embeddings=False  # Set to True to include vector embeddings
)

Configuration

The client can be configured with custom settings:

client = CondyClient(
    api_key="your-api-key",
    base_url="https://custom-url.example.com",  # Optional
    timeout=60.0  # Custom timeout in seconds
)

Document Metadata

The library supports rich document metadata:

# Process document with full metadata
doc_output = await client.process_document(
    url="https://example.com/doc.pdf",
    content_type="pdf",
    filename="important-doc.pdf",  # Optional: Custom filename
    file_key="doc-2023-01",       # Optional: Unique identifier
    public_url="https://example.com/doc.pdf"  # Optional: Public access URL
)

Error Handling

The library provides specific exceptions for different error cases:

  • NetworkError: For connection and network-related issues
  • TimeoutError: For request timeout issues
  • APIError: For API-specific errors with status codes and details
from condy import NetworkError, TimeoutError, APIError

try:
    response = await client.query_rag(question="...", document_id="...")
except TimeoutError:
    print("Request timed out")
except NetworkError:
    print("Network error occurred")
except APIError as e:
    print(f"API error: {e.status_code} - {e.detail}")

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

The usage of the library is subject to the Condensation.ai Terms of Service.

Support

For support, please contact support@condensation.ai.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

condy-0.3.9.tar.gz (9.8 kB view details)

Uploaded Source

Built Distribution

condy-0.3.9-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file condy-0.3.9.tar.gz.

File metadata

  • Download URL: condy-0.3.9.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for condy-0.3.9.tar.gz
Algorithm Hash digest
SHA256 b30de1ac23242307a1c194b4c3880c043fa09d7780be75e73ebae3d752d9c4f1
MD5 8e6d48bc7438943ea9445a4847dce6b3
BLAKE2b-256 d625de10286d3727bea91c38c26a19e9fe0a3845c544e317245e373edccc8d92

See more details on using hashes here.

File details

Details for the file condy-0.3.9-py3-none-any.whl.

File metadata

  • Download URL: condy-0.3.9-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for condy-0.3.9-py3-none-any.whl
Algorithm Hash digest
SHA256 eb0db26e0e85c752084aaa1286e1a0d7c8ed57a8d1ff8899c0e8226729a0aeb4
MD5 0a968580a365c376a491e3a51f8a86c8
BLAKE2b-256 b3c087c952536bff60c67dbe3567113689b8ab0d30139e2cb77f937dd9bc2e84

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page