Skip to main content

Load toml/yaml/json config files into classes for a typed config (type hinting etc.)

Project description

Classy Configuraptor

Configuraptor

Load config files into Python classes for a typed config (for type hinting etc.). Supported file types are toml/yaml/json, and .env/.ini to a lesser degree (see Supported Config File Types).

PyPI - Version PyPI - Python Version
Code style: black License: MIT
su6 checks Coverage

Table of Contents

Installation

pip install configuraptor

Usage

Configuraptor can be used to load your config files into structured Python classes.

# examples/example_from_readme.toml
[config]
name = "Hello World!"

[config.reference]
number = 42
numbers = [41, 43]
string = "42"

Could be loaded into Python classes using the following code:

# examples/example_from_readme.py
from configuraptor import load_into, TypedConfig


######################
# with basic classes #
######################

class SomeRegularClass:
    number: int
    numbers: list[int]
    string: str


class Config:
    name: str
    reference: SomeRegularClass


if __name__ == '__main__':
    my_config = load_into(Config, "example_from_readme.toml")  # or .json, .yaml, ...

    print(my_config.name)
    # Hello World!
    print(my_config.reference.numbers)
    # [41, 43]


########################
# alternative notation #
########################

class SomeOtherRegularClass:
    number: int
    numbers: list[int]
    string: str


class OtherConfig(TypedConfig):
    name: str
    reference: SomeRegularClass


if __name__ == '__main__':
    my_config = OtherConfig.load("https://api.my-server.dev/v1/config.json?secret=token")  # or .toml, .yaml, ...

    print(my_config.name)
    # Hello World!
    print(my_config.reference.numbers)
    # [41, 43]

    # TypedConfig has an extra benefit of allowing .update:
    my_config.update(numbers=[68, 70])

The second argument of .load_into and the first argument of .load (which is "example_from_readme.toml" in the examples above), can be either a string or a Path to a file, a raw dictionary with data, a URL or empty. You can also use a list of these options to combine data sources. If it is left empty, the pyproject.toml will be used. You can supply a key='tool.mytool.myconf' to specify which section of the file should be read. For HTTP authentication, currently you can use http basic auth (https://user:pass@host or query parameters (like ?token=...)). Other authentication methods are not currently supported.

More examples can be found in examples.

Supported Config File Types

  • .toml: supports the most types (strings, numbers, booleans, datetime, lists/arrays, dicts/tables);
  • .json: supports roughly the same types as toml (except datetime);
  • .yaml: supports roughly the same types as toml, backwards compatible with JSON;
  • .env: only supports strings. You can use convert_types=True to try to convert to your annotated types;
  • .ini: only supports strings. You can use convert_types=True to try to convert to your annotated types;

For other file types, a custom Loader can be written. See examples/readme.md#Custom File Types

Binary Config

You can also parse a struct-packed bytestring into a config class. For this, you have to use BinaryConfig with BinaryFields. Annotations are not supported in this case, because the order of properties is important for this type of config.

from configuraptor import BinaryConfig, BinaryField


class MyBinaryConfig(BinaryConfig):
    # annotations not supported! (because mixing annotation and __dict__ lookup messes with the order,
    # which is important for struct.(un)pack
    number = BinaryField(int)
    string = BinaryField(str, length=5)
    decimal = BinaryField(float)
    double = BinaryField(float, format="d")
    other_string = BinaryField(str, format="10s")
    boolean = BinaryField(bool)


MyBinaryConfig.load(
    b'*\x00\x00\x00Hello\x00\x00\x00fff@\xab\xaa\xaa\xaa\xaa\xaa\n@Hi\x00\x00\x00\x00\x00\x00\x00\x00\x01')

License

configuraptor is distributed under the terms of the MIT license.

Changelog

See CHANGELOG.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

configuraptor-1.23.3.tar.gz (572.4 kB view details)

Uploaded Source

Built Distribution

configuraptor-1.23.3-py3-none-any.whl (28.9 kB view details)

Uploaded Python 3

File details

Details for the file configuraptor-1.23.3.tar.gz.

File metadata

  • Download URL: configuraptor-1.23.3.tar.gz
  • Upload date:
  • Size: 572.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.24.1

File hashes

Hashes for configuraptor-1.23.3.tar.gz
Algorithm Hash digest
SHA256 554e419fc6048d4a9fe33ce766e29b13d994826f0fd0fac58785cfea75084474
MD5 1838892315769f20581f28c7428a4341
BLAKE2b-256 a4f3219ca3fc6ea2c14c946e30842cb61de907a8f61fccc8f3eefd29fe793bc3

See more details on using hashes here.

File details

Details for the file configuraptor-1.23.3-py3-none-any.whl.

File metadata

File hashes

Hashes for configuraptor-1.23.3-py3-none-any.whl
Algorithm Hash digest
SHA256 43ebc5b41e56d8551c66a7c8477f951a28252a32cc13e82548f03e7db265a306
MD5 4802ef1dee520c565957cf10738857c3
BLAKE2b-256 8762ad68735ec22a952ef769cd541136cb5b4a36bae5f88949ea2d85438f0d92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page