Skip to main content

Load toml/yaml/json config files into classes for a typed config (type hinting etc.)

Project description

Classy Configuraptor

Configuraptor

Load config files into Python classes for a typed config (for type hinting etc.). Supported file types are toml/yaml/json, and .env/.ini to a lesser degree (see Supported Config File Types).

PyPI - Version PyPI - Python Version
Code style: black License: MIT
su6 checks Coverage

Table of Contents

Installation

pip install configuraptor

Usage

Configuraptor can be used to load your config files into structured Python classes.

# examples/example_from_readme.toml
[config]
name = "Hello World!"

[config.reference]
number = 42
numbers = [41, 43]
string = "42"

Could be loaded into Python classes using the following code:

# examples/example_from_readme.py
from configuraptor import load_into, TypedConfig


######################
# with basic classes #
######################

class SomeRegularClass:
    number: int
    numbers: list[int]
    string: str


class Config:
    name: str
    reference: SomeRegularClass


if __name__ == '__main__':
    my_config = load_into(Config, "example_from_readme.toml")  # or .json, .yaml, ...

    print(my_config.name)
    # Hello World!
    print(my_config.reference.numbers)
    # [41, 43]


########################
# alternative notation #
########################

class SomeOtherRegularClass:
    number: int
    numbers: list[int]
    string: str


class OtherConfig(TypedConfig):
    name: str
    reference: SomeRegularClass


if __name__ == '__main__':
    my_config = OtherConfig.load("https://api.my-server.dev/v1/config.json?secret=token")  # or .toml, .yaml, ...

    print(my_config.name)
    # Hello World!
    print(my_config.reference.numbers)
    # [41, 43]

    # TypedConfig has an extra benefit of allowing .update:
    my_config.update(numbers=[68, 70])

The second argument of .load_into and the first argument of .load (which is "example_from_readme.toml" in the examples above), can be either a string or a Path to a file, a raw dictionary with data, a URL or empty. You can also use a list of these options to combine data sources. If it is left empty, the pyproject.toml will be used. You can supply a key='tool.mytool.myconf' to specify which section of the file should be read. For HTTP authentication, currently you can use http basic auth (https://user:pass@host or query parameters (like ?token=...)). Other authentication methods are not currently supported.

More examples can be found in examples.

Supported Config File Types

  • .toml: supports the most types (strings, numbers, booleans, datetime, lists/arrays, dicts/tables);
  • .json: supports roughly the same types as toml (except datetime);
  • .yaml: supports roughly the same types as toml, backwards compatible with JSON;
  • .env: only supports strings. You can use convert_types=True to try to convert to your annotated types;
  • .ini: only supports strings. You can use convert_types=True to try to convert to your annotated types;

For other file types, a custom Loader can be written. See examples/readme.md#Custom File Types

Binary Config

You can also parse a struct-packed bytestring into a config class. For this, you have to use BinaryConfig with BinaryFields. Annotations are not supported in this case, because the order of properties is important for this type of config.

from configuraptor import BinaryConfig, BinaryField


class MyBinaryConfig(BinaryConfig):
    # annotations not supported! (because mixing annotation and __dict__ lookup messes with the order,
    # which is important for struct.(un)pack
    number = BinaryField(int)
    string = BinaryField(str, length=5)
    decimal = BinaryField(float)
    double = BinaryField(float, format="d")
    other_string = BinaryField(str, format="10s")
    boolean = BinaryField(bool)


MyBinaryConfig.load(
    b'*\x00\x00\x00Hello\x00\x00\x00fff@\xab\xaa\xaa\xaa\xaa\xaa\n@Hi\x00\x00\x00\x00\x00\x00\x00\x00\x01')

License

configuraptor is distributed under the terms of the MIT license.

Changelog

See CHANGELOG.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

configuraptor-1.23.5.tar.gz (572.6 kB view details)

Uploaded Source

Built Distribution

configuraptor-1.23.5-py3-none-any.whl (29.0 kB view details)

Uploaded Python 3

File details

Details for the file configuraptor-1.23.5.tar.gz.

File metadata

  • Download URL: configuraptor-1.23.5.tar.gz
  • Upload date:
  • Size: 572.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.24.1

File hashes

Hashes for configuraptor-1.23.5.tar.gz
Algorithm Hash digest
SHA256 3ab75a60e9a1f544323ccf7577baae17439e5f1ef066a0c59bef1c68bc689e8c
MD5 17ba91719f573be530d9d279d443d146
BLAKE2b-256 d0df000f1c06f05d268163cc066022710e8f847a7fc827455750163987593ff0

See more details on using hashes here.

File details

Details for the file configuraptor-1.23.5-py3-none-any.whl.

File metadata

File hashes

Hashes for configuraptor-1.23.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b86c8cad5194ef99731e736c9b28dfcd667a4ccb52831f10cb9e1118abef3f85
MD5 0d4c49ef25e5e44400cac8c70ef9f3c7
BLAKE2b-256 aac82580610e52a1ea0b74491280cbbf6c6f6acc3bce07fa8dbdc473d4cb51b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page