Skip to main content

Confluent's Python client for Apache Kafka

Project description

Confluent's Python Client for Apache KafkaTM

confluent-kafka-python provides a high-level Producer, Consumer and AdminClient compatible with all Apache KafkaTM brokers >= v0.8, Confluent Cloud and the Confluent Platform. The client is:

  • Reliable - It's a wrapper around librdkafka (provided automatically via binary wheels) which is widely deployed in a diverse set of production scenarios. It's tested using the same set of system tests as the Java client and more. It's supported by Confluent.

  • Performant - Performance is a key design consideration. Maximum throughput is on par with the Java client for larger message sizes (where the overhead of the Python interpreter has less impact). Latency is on par with the Java client.

  • Future proof - Confluent, founded by the creators of Kafka, is building a streaming platform with Apache Kafka at its core. It's high priority for us that client features keep pace with core Apache Kafka and components of the Confluent Platform.

See the API documentation for more info.

Usage

Below are some examples of typical usage. For more examples, see the examples directory or the confluentinc/examples github repo for a Confluent Cloud example.

Producer

from confluent_kafka import Producer


p = Producer({'bootstrap.servers': 'mybroker1,mybroker2'})

def delivery_report(err, msg):
    """ Called once for each message produced to indicate delivery result.
        Triggered by poll() or flush(). """
    if err is not None:
        print('Message delivery failed: {}'.format(err))
    else:
        print('Message delivered to {} [{}]'.format(msg.topic(), msg.partition()))

for data in some_data_source:
    # Trigger any available delivery report callbacks from previous produce() calls
    p.poll(0)

    # Asynchronously produce a message, the delivery report callback
    # will be triggered from poll() above, or flush() below, when the message has
    # been successfully delivered or failed permanently.
    p.produce('mytopic', data.encode('utf-8'), callback=delivery_report)

# Wait for any outstanding messages to be delivered and delivery report
# callbacks to be triggered.
p.flush()

High-level Consumer

from confluent_kafka import Consumer


c = Consumer({
    'bootstrap.servers': 'mybroker',
    'group.id': 'mygroup',
    'auto.offset.reset': 'earliest'
})

c.subscribe(['mytopic'])

while True:
    msg = c.poll(1.0)

    if msg is None:
        continue
    if msg.error():
        print("Consumer error: {}".format(msg.error()))
        continue

    print('Received message: {}'.format(msg.value().decode('utf-8')))

c.close()

AvroProducer

from confluent_kafka import avro
from confluent_kafka.avro import AvroProducer


value_schema_str = """
{
   "namespace": "my.test",
   "name": "value",
   "type": "record",
   "fields" : [
     {
       "name" : "name",
       "type" : "string"
     }
   ]
}
"""

key_schema_str = """
{
   "namespace": "my.test",
   "name": "key",
   "type": "record",
   "fields" : [
     {
       "name" : "name",
       "type" : "string"
     }
   ]
}
"""

value_schema = avro.loads(value_schema_str)
key_schema = avro.loads(key_schema_str)
value = {"name": "Value"}
key = {"name": "Key"}


def delivery_report(err, msg):
    """ Called once for each message produced to indicate delivery result.
        Triggered by poll() or flush(). """
    if err is not None:
        print('Message delivery failed: {}'.format(err))
    else:
        print('Message delivered to {} [{}]'.format(msg.topic(), msg.partition()))


avroProducer = AvroProducer({
    'bootstrap.servers': 'mybroker,mybroker2',
    'on_delivery': delivery_report,
    'schema.registry.url': 'http://schema_registry_host:port'
    }, default_key_schema=key_schema, default_value_schema=value_schema)

avroProducer.produce(topic='my_topic', value=value, key=key)
avroProducer.flush()

AvroConsumer

from confluent_kafka.avro import AvroConsumer
from confluent_kafka.avro.serializer import SerializerError


c = AvroConsumer({
    'bootstrap.servers': 'mybroker,mybroker2',
    'group.id': 'groupid',
    'schema.registry.url': 'http://127.0.0.1:8081'})

c.subscribe(['my_topic'])

while True:
    try:
        msg = c.poll(10)

    except SerializerError as e:
        print("Message deserialization failed for {}: {}".format(msg, e))
        break

    if msg is None:
        continue

    if msg.error():
        print("AvroConsumer error: {}".format(msg.error()))
        continue

    print(msg.value())

c.close()

AdminClient

Create topics:

from confluent_kafka.admin import AdminClient, NewTopic

a = AdminClient({'bootstrap.servers': 'mybroker'})

new_topics = [NewTopic(topic, num_partitions=3, replication_factor=1) for topic in ["topic1", "topic2"]]
# Note: In a multi-cluster production scenario, it is more typical to use a replication_factor of 3 for durability.

# Call create_topics to asynchronously create topics. A dict
# of <topic,future> is returned.
fs = a.create_topics(new_topics)

# Wait for each operation to finish.
for topic, f in fs.items():
    try:
        f.result()  # The result itself is None
        print("Topic {} created".format(topic))
    except Exception as e:
        print("Failed to create topic {}: {}".format(topic, e))

Thread Safety

The Producer, Consumer and AdminClient are all thread safe.

Install

Install self-contained binary wheels

$ pip install confluent-kafka

NOTE: The pre-built Linux wheels do NOT contain SASL Kerberos/GSSAPI support. If you need SASL Kerberos/GSSAPI support you must install librdkafka and its dependencies using the repositories below and then build confluent-kafka using the command in the "Install from source from PyPi" section below.

Install AvroProducer and AvroConsumer

$ pip install "confluent-kafka[avro]"

Install from source from PyPi (requires librdkafka + dependencies to be installed separately):

$ pip install --no-binary :all: confluent-kafka

For source install, see Prerequisites below.

Broker Compatibility

The Python client (as well as the underlying C library librdkafka) supports all broker versions >= 0.8. But due to the nature of the Kafka protocol in broker versions 0.8 and 0.9 it is not safe for a client to assume what protocol version is actually supported by the broker, thus you will need to hint the Python client what protocol version it may use. This is done through two configuration settings:

  • broker.version.fallback=YOUR_BROKER_VERSION (default 0.9.0.1)
  • api.version.request=true|false (default true)

When using a Kafka 0.10 broker or later you don't need to do anything (api.version.request=true is the default). If you use Kafka broker 0.9 or 0.8 you must set api.version.request=false and set broker.version.fallback to your broker version, e.g broker.version.fallback=0.9.0.1.

More info here: https://github.com/edenhill/librdkafka/wiki/Broker-version-compatibility

SSL certificates

If you're connecting to a Kafka cluster through SSL you will need to configure the client with 'security.protocol': 'SSL' (or 'SASL_SSL' if SASL authentication is used).

The client will use CA certificates to verify the broker's certificate. The embedded OpenSSL library will look for CA certificates in /usr/lib/ssl/certs/ or /usr/lib/ssl/cacert.pem. CA certificates are typically provided by the Linux distribution's ca-certificates package which needs to be installed through apt, yum, et.al.

If your system stores CA certificates in another location you will need to configure the client with 'ssl.ca.location': '/path/to/cacert.pem'.

Alternatively, the CA certificates can be provided by the certifi Python package. To use certifi, add an import certifi line and configure the client's CA location with 'ssl.ca.location': certifi.where().

Prerequisites

  • Python >= 2.7 or Python 3.x
  • librdkafka >= 1.6.0 (latest release is embedded in wheels)

librdkafka is embedded in the macosx manylinux wheels, for other platforms, SASL Kerberos/GSSAPI support or when a specific version of librdkafka is desired, following these guidelines:

License

Apache License v2.0

KAFKA is a registered trademark of The Apache Software Foundation and has been licensed for use by confluent-kafka-python. confluent-kafka-python has no affiliation with and is not endorsed by The Apache Software Foundation.

Developer Notes

Instructions on building and testing confluent-kafka-python can be found here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

confluent-kafka-1.8.2.tar.gz (104.6 kB view details)

Uploaded Source

Built Distributions

confluent_kafka-1.8.2-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

confluent_kafka-1.8.2-cp39-cp39-win32.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86

confluent_kafka-1.8.2-cp39-cp39-manylinux2010_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

confluent_kafka-1.8.2-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

confluent_kafka-1.8.2-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

confluent_kafka-1.8.2-cp38-cp38-win32.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86

confluent_kafka-1.8.2-cp38-cp38-manylinux2010_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

confluent_kafka-1.8.2-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

confluent_kafka-1.8.2-cp37-cp37m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

confluent_kafka-1.8.2-cp37-cp37m-win32.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86

confluent_kafka-1.8.2-cp37-cp37m-manylinux2010_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

confluent_kafka-1.8.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

confluent_kafka-1.8.2-cp36-cp36m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

confluent_kafka-1.8.2-cp36-cp36m-win32.whl (2.2 MB view details)

Uploaded CPython 3.6m Windows x86

confluent_kafka-1.8.2-cp36-cp36m-manylinux2010_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

confluent_kafka-1.8.2-cp36-cp36m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file confluent-kafka-1.8.2.tar.gz.

File metadata

  • Download URL: confluent-kafka-1.8.2.tar.gz
  • Upload date:
  • Size: 104.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.8

File hashes

Hashes for confluent-kafka-1.8.2.tar.gz
Algorithm Hash digest
SHA256 b79e836c3554bc51c6837a8a0152f7521c9bf31342f5b8e21eba6b28044fa585
MD5 ea914007b6dea13097ea7ae3e0039c97
BLAKE2b-256 fb16d04dded73439266a3dbcd585f1128483dcf509e039bacd93642ac5de97d4

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f843680e183479f6e0732b593ea3235c836a5bb2de6be3819a11b891b6af1dde
MD5 077bc80faba0e5306ae7be695d8770e4
BLAKE2b-256 ace45a1d92c8d1a1e68d3d444a45e2367b966883167a383c3e49a50c0c08227f

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b679c3f9f555e87a9cbb043c676473c30d12182609e075be85afd98f84bcc863
MD5 ddfa9f223a5084852690a2e9c647a860
BLAKE2b-256 492c3c257b16a8409c5ab0e50480e04e28856022e27c2de70141d69738c22c2d

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e49382a943fb47813f421e913cc6c87cd1d4bfdecad1785efa0dacada7003d84
MD5 a1f61f47d9fb2fce60d20ed190c2ad65
BLAKE2b-256 ae822b0d31b74ef6b88b03447b29d3bf2cc8cafb498eddd5b077b96ee2397639

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 add05db627435697d4ed8f81b3ce1081931770813a989fd775910865f07d694d
MD5 6ccd6439fdbb775b3a4c6e6719778f98
BLAKE2b-256 25725c33e0f5516599c8b950bc83a54c7380da137f0827b759285ba0eb40437c

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1df83fa20e4fe032651ad73ce0ba85dd14a7fabff6066c9cb20e944d2748e72b
MD5 9c7bebfa9b97e0c377191192d0603927
BLAKE2b-256 340ae59cc549734b7e098c9fc24357c35e5407b3e7b96f6326ada116d50d365d

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ae75d3f4bc3d2109663912d77911c45aaa2939bde3694fc05e75842c806fa760
MD5 5d4fce0e26e1eaf44c8324ccedb78458
BLAKE2b-256 a9a9aa535e193ada55dd6dbbc82d45d3975889ad0d0136a8d4f302586a18fad5

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 585bc8e8aa7d6fbd46dc0b2da3d4b1fd8457555288fee1ecba6af2c97ab738cc
MD5 f2337f67784279a57260b9316b1ea6e4
BLAKE2b-256 da9bf09a614e6b6b5e892c7aa50240ffe4e132664abb7f7b9fcdc89a4dddf35b

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d66e8c1a6a15144ca5b176170adbf30207c27813c76202c56abf52ef2b475e1
MD5 d7b2bc5c7b66470000c12256116cac64
BLAKE2b-256 1d4ec0ffe941bcc63105ad345e99ee92de2f6d8ae5ea3446e80c8fd9e994502e

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ead7f18c516f7bcb886b643fa78ff2a2142270adaf931ba0311b62e9a047e6ca
MD5 b0c48793db8eca716d130337bb8e8738
BLAKE2b-256 7d46d9a138321f8d159d525872613dd9d8fec7ca5e2c954e504c5571833ec43d

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 748813f47641dd65dd8d3bae8dcb3ce96a3e455c12b467d4b35e1fc880362d01
MD5 ef1704092dfc82f17b26c90e922f721c
BLAKE2b-256 0b48e193c49ee699de18a1495fdbb31d7dcf13f1740ea81ab30cdeaa84db6079

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b7cb6fa3d44972e3670e0b3b054186a6006e6fd664600cfe70e008fad2443d16
MD5 340c35ca00790611d0f2975879eca5f8
BLAKE2b-256 2548274da3db4e180b936da65ffcd10d6840606c347f009a29f66de109ee4956

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 039c68379f9a5ece6e45a683ec7abebb95a9dac904ec4e2f9d93738e1cf6fab2
MD5 e43c96662a17dcc60c1c17ef7365bb13
BLAKE2b-256 e52e394ad8de804e79200969beef01a0c2f61c233c8a537fedf103afc772b88b

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ac7155e1b9a94445ed8eecf691c80c61407148813808a2aa1cba0babbe197e77
MD5 21d10c34bff55a23c3fbcbdbacd2d5bd
BLAKE2b-256 d00085a11c34f8a58469605a85c661dbabebd6375c737bd8ee4d95dc13110616

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 4f26052ef53212752039cd1d9e932b2feb6a0975d717ab070af323629a72a0b9
MD5 bb309b5e34b2c3bf9e2e5001e9ad3719
BLAKE2b-256 270dd8b5c3cad36c5e3098b3328086bc38168a1c8ea2dbc3cebbae932407f6b8

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d50b091770d277714766943d885ad6b2c5c427e67328706cfd33dc86eef540c9
MD5 fccc31a9c439e9ba6ee8b4cd41912ff2
BLAKE2b-256 e8f750370fa5abb85489262f4526235bbd5447df56ce5bd02f2b8ec788759c0a

See more details on using hashes here.

File details

Details for the file confluent_kafka-1.8.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: confluent_kafka-1.8.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for confluent_kafka-1.8.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 02b78bb6d1199ea350240eae1f4415f22014896199a46edf85f779a69751f984
MD5 9e75567b2208882ea1c9978993e38e3f
BLAKE2b-256 8e3711ad435bae981939a24807ff86bf6c15c237e7bdee5794e13a4f96593f46

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page