Skip to main content

Confluent's Python client for Apache Kafka

Reason this release was yanked:

Malformed deployment

Project description

[!WARNING] Due to an error in which we included dependency changes to a recent patch release, Confluent recommends users to refrain from upgrading to 2.6.2 of Confluent Kafka. Confluent will release a new minor version, 2.7.0, where the dependency changes will be appropriately included. Users who have already upgraded to 2.6.2 and made the required dependency changes are free to remain on that version and are recommended to upgrade to 2.7.0 when that version is available. Upon the release of 2.7.0, the 2.6.2 version will be marked deprecated. We apologize for the inconvenience and appreciate the feedback that we have gotten from the community.

Confluent's Python Client for Apache KafkaTM

confluent-kafka-python provides a high-level Producer, Consumer and AdminClient compatible with all Apache KafkaTM brokers >= v0.8, Confluent Cloud and Confluent Platform. The client is:

  • Reliable - It's a wrapper around librdkafka (provided automatically via binary wheels) which is widely deployed in a diverse set of production scenarios. It's tested using the same set of system tests as the Java client and more. It's supported by Confluent.

  • Performant - Performance is a key design consideration. Maximum throughput is on par with the Java client for larger message sizes (where the overhead of the Python interpreter has less impact). Latency is on par with the Java client.

  • Future proof - Confluent, founded by the creators of Kafka, is building a streaming platform with Apache Kafka at its core. It's high priority for us that client features keep pace with core Apache Kafka and components of the Confluent Platform.

Usage

For a step-by-step guide on using the client see Getting Started with Apache Kafka and Python.

Aditional examples can be found in the examples directory or the confluentinc/examples github repo, which include demonstration of:

  • Exactly once data processing using the transactional API.
  • Integration with asyncio.
  • (De)serializing Protobuf, JSON, and Avro data with Confluent Schema Registry integration.
  • Confluent Cloud configuration.

Also refer to the API documentation.

Finally, the tests are useful as a reference for example usage.

Basic Producer Example

from confluent_kafka import Producer

p = Producer({'bootstrap.servers': 'mybroker1,mybroker2'})

def delivery_report(err, msg):
    """ Called once for each message produced to indicate delivery result.
        Triggered by poll() or flush(). """
    if err is not None:
        print('Message delivery failed: {}'.format(err))
    else:
        print('Message delivered to {} [{}]'.format(msg.topic(), msg.partition()))

for data in some_data_source:
    # Trigger any available delivery report callbacks from previous produce() calls
    p.poll(0)

    # Asynchronously produce a message. The delivery report callback will
    # be triggered from the call to poll() above, or flush() below, when the
    # message has been successfully delivered or failed permanently.
    p.produce('mytopic', data.encode('utf-8'), callback=delivery_report)

# Wait for any outstanding messages to be delivered and delivery report
# callbacks to be triggered.
p.flush()

For a discussion on the poll based producer API, refer to the Integrating Apache Kafka With Python Asyncio Web Applications blog post.

Basic Consumer Example

from confluent_kafka import Consumer

c = Consumer({
    'bootstrap.servers': 'mybroker',
    'group.id': 'mygroup',
    'auto.offset.reset': 'earliest'
})

c.subscribe(['mytopic'])

while True:
    msg = c.poll(1.0)

    if msg is None:
        continue
    if msg.error():
        print("Consumer error: {}".format(msg.error()))
        continue

    print('Received message: {}'.format(msg.value().decode('utf-8')))

c.close()

Basic AdminClient Example

Create topics:

from confluent_kafka.admin import AdminClient, NewTopic

a = AdminClient({'bootstrap.servers': 'mybroker'})

new_topics = [NewTopic(topic, num_partitions=3, replication_factor=1) for topic in ["topic1", "topic2"]]
# Note: In a multi-cluster production scenario, it is more typical to use a replication_factor of 3 for durability.

# Call create_topics to asynchronously create topics. A dict
# of <topic,future> is returned.
fs = a.create_topics(new_topics)

# Wait for each operation to finish.
for topic, f in fs.items():
    try:
        f.result()  # The result itself is None
        print("Topic {} created".format(topic))
    except Exception as e:
        print("Failed to create topic {}: {}".format(topic, e))

Thread Safety

The Producer, Consumer and AdminClient are all thread safe.

Install

Install self-contained binary wheels

$ pip install confluent-kafka

NOTE: The pre-built Linux wheels do NOT contain SASL Kerberos/GSSAPI support. If you need SASL Kerberos/GSSAPI support you must install librdkafka and its dependencies using the repositories below and then build confluent-kafka using the instructions in the "Install from source" section below.

To use Schema Registry with the Avro serializer/deserializer:

$ pip install confluent-kafka[avro,schemaregistry]

To use Schema Registry with the JSON serializer/deserializer:

$ pip install confluent-kafka[json,schemaregistry]

To use Schema Registry with the Protobuf serializer/deserializer:

$ pip install confluent-kafka[protobuf,schemaregistry]

When using Data Contract rules (including CSFLE) add the rulesextra, e.g.:

$ pip install confluent-kafka[avro,schemaregistry,rules]

Install from source

For source install, see the Install from source section in INSTALL.md.

Broker Compatibility

The Python client (as well as the underlying C library librdkafka) supports all broker versions >= 0.8. But due to the nature of the Kafka protocol in broker versions 0.8 and 0.9 it is not safe for a client to assume what protocol version is actually supported by the broker, thus you will need to hint the Python client what protocol version it may use. This is done through two configuration settings:

  • broker.version.fallback=YOUR_BROKER_VERSION (default 0.9.0.1)
  • api.version.request=true|false (default true)

When using a Kafka 0.10 broker or later you don't need to do anything (api.version.request=true is the default). If you use Kafka broker 0.9 or 0.8 you must set api.version.request=false and set broker.version.fallback to your broker version, e.g broker.version.fallback=0.9.0.1.

More info here: https://github.com/edenhill/librdkafka/wiki/Broker-version-compatibility

SSL certificates

If you're connecting to a Kafka cluster through SSL you will need to configure the client with 'security.protocol': 'SSL' (or 'SASL_SSL' if SASL authentication is used).

The client will use CA certificates to verify the broker's certificate. The embedded OpenSSL library will look for CA certificates in /usr/lib/ssl/certs/ or /usr/lib/ssl/cacert.pem. CA certificates are typically provided by the Linux distribution's ca-certificates package which needs to be installed through apt, yum, et.al.

If your system stores CA certificates in another location you will need to configure the client with 'ssl.ca.location': '/path/to/cacert.pem'.

Alternatively, the CA certificates can be provided by the certifi Python package. To use certifi, add an import certifi line and configure the client's CA location with 'ssl.ca.location': certifi.where().

License

Apache License v2.0

KAFKA is a registered trademark of The Apache Software Foundation and has been licensed for use by confluent-kafka-python. confluent-kafka-python has no affiliation with and is not endorsed by The Apache Software Foundation.

Developer Notes

Instructions on building and testing confluent-kafka-python can be found here.

Confluent Cloud

For a step-by-step guide on using the Python client with Confluent Cloud see Getting Started with Apache Kafka and Python on Confluent Developer.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

confluent_kafka-2.8.1.tar.gz (191.7 kB view details)

Uploaded Source

Built Distributions

confluent_kafka-2.8.1-cp313-cp313t-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.1-cp313-cp313-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.13 Windows x86-64

confluent_kafka-2.8.1-cp313-cp313-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.1-cp313-cp313-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.1-cp313-cp313-macosx_13_0_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.13 macOS 13.0+ x86-64

confluent_kafka-2.8.1-cp313-cp313-macosx_13_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.13 macOS 13.0+ ARM64

confluent_kafka-2.8.1-cp312-cp312-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

confluent_kafka-2.8.1-cp312-cp312-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.1-cp312-cp312-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.1-cp312-cp312-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

confluent_kafka-2.8.1-cp312-cp312-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

confluent_kafka-2.8.1-cp311-cp311-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

confluent_kafka-2.8.1-cp311-cp311-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.1-cp311-cp311-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.1-cp311-cp311-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

confluent_kafka-2.8.1-cp311-cp311-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

confluent_kafka-2.8.1-cp310-cp310-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

confluent_kafka-2.8.1-cp310-cp310-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.1-cp310-cp310-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.1-cp310-cp310-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

confluent_kafka-2.8.1-cp310-cp310-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

confluent_kafka-2.8.1-cp39-cp39-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

confluent_kafka-2.8.1-cp39-cp39-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.1-cp39-cp39-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.1-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

confluent_kafka-2.8.1-cp39-cp39-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

confluent_kafka-2.8.1-cp38-cp38-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

confluent_kafka-2.8.1-cp38-cp38-manylinux_2_28_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.1-cp38-cp38-manylinux_2_28_aarch64.whl (15.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.1-cp38-cp38-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

confluent_kafka-2.8.1-cp38-cp38-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

confluent_kafka-2.8.1-cp37-cp37m-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

confluent_kafka-2.8.1-cp37-cp37m-manylinux_2_28_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.1-cp37-cp37m-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.1-cp37-cp37m-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file confluent_kafka-2.8.1.tar.gz.

File metadata

  • Download URL: confluent_kafka-2.8.1.tar.gz
  • Upload date:
  • Size: 191.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.9.6

File hashes

Hashes for confluent_kafka-2.8.1.tar.gz
Algorithm Hash digest
SHA256 35328fb096ce0d92fd62c946aae9cc0d33b0e8706ae3f1b69f5cd295a499424b
MD5 39f686233800579966f1e153a79c3146
BLAKE2b-256 3ed2560ecb0247a8073a3499ad5b6c583342a7f54fa2999c9760e33d647378cf

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp313-cp313t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp313-cp313t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f3c8bb25e0a1ebaeaf2104b5f217ce4372a19f606f2a0d4d29cf6aeb51fbabf3
MD5 ce2411f2a1c7468194053498f0162413
BLAKE2b-256 85fb26e389e8556422202a28f18ef54d4c39cb8e0154c9cbf9182cd61ca998fb

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 07fc203a5f1297a7e41422f31eee79b58266216cafc54cb399cc8dcd919bd01c
MD5 04c7674ada343f60d8c7402a7fef2112
BLAKE2b-256 ccb2a52d0fa14bd0aabde4ada6a63e6b48b7580d25986937af72f8603d77c2c2

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8726c71264e8d24313626590ff13ae385a71c81d34f0696d5cf73d4ce56bd54a
MD5 9b79b0a3f19e33da9ebea52308ac74f3
BLAKE2b-256 ad831619aaa82fbfd9f9bfbadb587d5510a55df2f9f87f6f5791af1bc6d8edc2

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 66b1f70db1e68d9a79d2de7f8c711c9de4bf8dfa518927bc213e3d25213a5598
MD5 65fd450c95d8ad9658e8f3f1e7fc750f
BLAKE2b-256 77e037823756ee411dfc503f160c5ea012f8e7cd16d3edce030f27e145d20bbc

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp313-cp313-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp313-cp313-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 aa3d5d60dfff16b6b454f9ff9bec616068f02df8089e250197e0c0cce92bf338
MD5 0ed8f953894d4c1a70f8197b46761238
BLAKE2b-256 994a7c9349d8b26cad4e26b4894a6dd10ce6ba77d0134cc657582e9d9806d1c2

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp313-cp313-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp313-cp313-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 c60265d9daaf957077b643c3af4effae5bf3f0ea5a81cf96ff479e73a6bb556d
MD5 b8f5317f248937d68f7f91b529d1977d
BLAKE2b-256 dd7f0d2b2e419a27d0dc581780250657f2d74d6a404edf100921f7bdeaf8d2c3

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3bbcd2f5cf42c26a02fdd1b3672425209b095d1b8b72d55eca47c4fdc8f6c1f8
MD5 944ee53ab4484b1eecce58200d3e0b43
BLAKE2b-256 1b24494195ebf04e3198e6cc15c17ba69a552ec6d892e8074e9fbab05bfa5d65

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7d1baa6e5f23e928301128062118fc07ff1c7b2b96dac0a8d606a1f2552623f0
MD5 8d24a22b2e447841cf22fac1955f3ec1
BLAKE2b-256 98a0e170c5ac22400075d5a3f262cbcca51fb5d157fe14ab749e1282c6694526

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ecafeb317e277043fd01d0fd7f9730ff8a1b83177871926c1094245b7895528e
MD5 f07d2e9efa75114badf52cd828cb82ce
BLAKE2b-256 e66d0f397eb00d87ce55739650255c57925d11f49b550d9eabd5ffb8c4b44dfe

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d686435832d9666f363cbda675e98626fa5870b4e410a278de4b291d6f20ab31
MD5 cf7934aeb6ff4b9f1bfa8503b0562645
BLAKE2b-256 82884eee56c6c3bf8de055b864a1559912bc25d190867c03ccd94af815168fea

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 90be06b6fc3ddf8fbbf616d294c3ae616a9d7a2c0fa1d2fde1614f2923758c0b
MD5 d38917b285baa141b45d353b9c5bd561
BLAKE2b-256 d0a4961dc742762ee970a841cf265dd7257f5215187009037c1faddefd5b3e88

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f9043f273382dcb51ef4a679f0bc3d98f9983a039df9b5aa9b6f2b159c806355
MD5 79f06650956726ed290a2308048a631f
BLAKE2b-256 32c472408de2d460e2e56457f9532808b38436770e36fe0e772486daec808079

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d305408e0e765c13861a3abc7d98e37e2eb5546ed870fff40702e6a6001efde0
MD5 1ee50d740451e0b17c73f9c33ee3c6f3
BLAKE2b-256 ef1aa5f83d2b1d0ea561000420fe393548e736317c0a89ae38a75be9a7e790d7

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 166371215c04ee9fad89f2f940cd15130cdf8cfa07f2e8eaab7fd348132afaf3
MD5 fc5e8345f45db17ed1d217bad4680baa
BLAKE2b-256 036e09276bf0b904be26192a6513579191b5f1e710f759b91e4acc632db0ab34

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b31f4666eb8af3706da152bee02514ba54afc499019397b10f816b97f941e1ce
MD5 06f7c83b162c814b62719883ddba0274
BLAKE2b-256 85c2e068db0d225fe2c28d0df9083db300181af5cf16d23fbaeaed7c027cb352

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c34970ed7b48c9679905ff0fd0ec709d04b44438e77747b8fd096b533a857a83
MD5 18b2675195d6e06cb9823092f7fbdd45
BLAKE2b-256 6e03a9e6e080f7d33e4e5947171ec9d08460f32e51ada716c681ab323bc16c0c

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 547865d01ce8bace5146952e2ce75511b1963c4552a938af1a4d6f2d67066986
MD5 57f6874e0d0efed6755e4653cf4fb291
BLAKE2b-256 fac3daef6fdcc7e688cb170ffaea631a3ec19ecc936c19e9cfbce72e4c7cc79b

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 03c8d9269c3be30db42bb8d4e0d9a694dcd40addfd169bbb1815cd8afd7c61da
MD5 0f5e6c7c81bb57382e3f04f21ac6090f
BLAKE2b-256 b1041bbf38cf18958620f2d4cec253c6b4e3f7eb55c3c06f524e196636e5e04c

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 16291835ca67d2972ed2ce87f5465f8aad82ea6ad4d06c8b5257915b61d392aa
MD5 5e8958f26265c2fcf20182507d9a0557
BLAKE2b-256 0e06e1c89f4ceff3a3b25a8162dae455195d70a142b222c708ca2d24b34e6fe9

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7024ba766823f427bdd6bc084188cec431472417aa84d3b16cb8b614c9681a3f
MD5 b45db28dda4856dbbe8d80ae8805bb7b
BLAKE2b-256 dcb1320c123d287854b2b25e52697c0ecc0793bf4c304d21068814b14cf9b678

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2efa0f82311bbe1f74601f04f4b085fd0fa4f8707869bacb165bd71881d86984
MD5 68aed8a5c0f90e788e0fb34f4cd3c098
BLAKE2b-256 e778a5d95e77dce14fc61b41824775d9e3a3a894be32494850d3cd6ef10eadc5

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4da9da3f1623654ebc9b6dda575201d30ff6ca886b827ae3f2d96b56110a6ef3
MD5 eb280fa4256e29f82898e8fdc5734350
BLAKE2b-256 6d32fb47601020c368a9293b4352ea242c096563dfa736d9b686971ca5f06496

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6d5b81b25e9c717f15b650d8afa9288bfff6b3658c352e0c8cecfcbe0318045a
MD5 1c42cc8ad16752ac50b7baf28ac6585c
BLAKE2b-256 cf18ae3e47eb695ffb23da94b119ddb8aec5f6155e26ee6e54045becf9b594a8

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 51baee21d85f8123a1198044d33d86b6b5baa5a8ba12a8396bb494f2b2879b13
MD5 a5e5f4436f95d364db187faa3577e550
BLAKE2b-256 398c18791772205786490cb5f8f8d0cc80caf221d34e3c62c6844d69bda1c450

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2b2d3abbd5b34ab361da5ff1c5b69606e72ecb8ba8fd4e6adf45d7b44492fc7a
MD5 dbf09288a07b431ab7bebc5f8d20a648
BLAKE2b-256 d37593b7406ae5ca683d3af28da7e1f661bbff5469b1c133fd7f2dadbfc19e2a

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f0870d28f58548ba738445685db85031ab10ad26a9501639c5458121d05a08db
MD5 0a42b42c645630d3e4f73405ad9366e8
BLAKE2b-256 0f7cbf4972a036521e09ee1f54ec005b12c953e2fb8914c7aef4ebe724efd85a

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 25eb813a24b2a00ceedc330d8d0155026b51e497d9396bb2248821f5bc7688fc
MD5 ac007e4c9caa425e348391686224dcbb
BLAKE2b-256 5bafb40d1cfa173734777ce382666ecf55661e234f69478a25455a9a5da2edb8

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7acea7631461e979331b86677d76fcce1e7c10fced7e5d2cdc45b4a62ba0de17
MD5 1c7607a5da4586ad7f48a08e46fc6cad
BLAKE2b-256 84f3be9ff36a2a34744512c520cf4c25801faec8f9caaff3f172b47c1f8257b7

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c55b70438a7c26441aba88332da7ebbf5ff38333ee42fff0c6ac78ab88529e8b
MD5 3a498f829b7ed6dac08198b953670e6e
BLAKE2b-256 5856a2005ad90ce6b06cd0e8dae06b11fa86a4b59090383ab91cff2b8cfb057f

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0723f00b17f4a595af1392c7cabf975e6a70a67d1a8b7ab1c6f54f02d3091ff7
MD5 3fcf42d85b63712e6a7de284c1b31656
BLAKE2b-256 2c80d4bad5e8096e17017bdf564289eaa07b3ba3398b4b80f2ff5b9f5a277b6d

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec986ca069c034c3ec91b2a5f07117a68f09782567081d5dab296857e4eeeaee
MD5 4529e083d4a04d78525fb60591c06dd2
BLAKE2b-256 70ef6049deda0ad94d0e2f9465107c3b22e5b4707a8bf2bf625f1d9247d3e1ac

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0d99938fdd817d5b497860cc3f0528ba2f3e0690bee857f1e74d593cec4875f3
MD5 c66a5fc1789362a7f7d73e213fe8d1f0
BLAKE2b-256 24b5832c377bf1220c5cc57021d87ca56971456889f53fa4d62a21967856fb8d

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7cbb20d7b9b6faf8c57a3ac9e5c2ee2097ec1dedfa5d8c3e8faba46d800891f4
MD5 aa7f5b1d759f462cbbf660aa499ef2e2
BLAKE2b-256 ee2d9309e1a80ac1d7a227fc3f31dd62742e697182d6dbef67b1514dc8d62a2f

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4983acdfaf8d941d03a7584c670e8b959d1ee77e4896e112df3ca9ef927b6494
MD5 7383c215ffb17d80cf97cb81717d6903
BLAKE2b-256 456a9dd0358d894211bb87045a8c31678f961a208c8090d4545239491ad21369

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a9b61ad6e6c80af779dd5840ddf5d78ca0c96f77a9f7b03892f344c21a1062d
MD5 a157e50816b537eaecd5c40eabda31db
BLAKE2b-256 035cd13388a94bb70c39586475e031a55dbb59817d6273c8a1f0303a000d8ee3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page