Skip to main content

Confluent's Python client for Apache Kafka

Project description

[!WARNING] Due to an error in which we included dependency changes to a recent patch release, Confluent recommends users to refrain from upgrading to 2.6.2 of Confluent Kafka. Confluent will release a new minor version, 2.7.0, where the dependency changes will be appropriately included. Users who have already upgraded to 2.6.2 and made the required dependency changes are free to remain on that version and are recommended to upgrade to 2.7.0 when that version is available. Upon the release of 2.7.0, the 2.6.2 version will be marked deprecated. We apologize for the inconvenience and appreciate the feedback that we have gotten from the community.

Confluent's Python Client for Apache KafkaTM

confluent-kafka-python provides a high-level Producer, Consumer and AdminClient compatible with all Apache KafkaTM brokers >= v0.8, Confluent Cloud and Confluent Platform. The client is:

  • Reliable - It's a wrapper around librdkafka (provided automatically via binary wheels) which is widely deployed in a diverse set of production scenarios. It's tested using the same set of system tests as the Java client and more. It's supported by Confluent.

  • Performant - Performance is a key design consideration. Maximum throughput is on par with the Java client for larger message sizes (where the overhead of the Python interpreter has less impact). Latency is on par with the Java client.

  • Future proof - Confluent, founded by the creators of Kafka, is building a streaming platform with Apache Kafka at its core. It's high priority for us that client features keep pace with core Apache Kafka and components of the Confluent Platform.

Usage

For a step-by-step guide on using the client see Getting Started with Apache Kafka and Python.

Aditional examples can be found in the examples directory or the confluentinc/examples github repo, which include demonstration of:

  • Exactly once data processing using the transactional API.
  • Integration with asyncio.
  • (De)serializing Protobuf, JSON, and Avro data with Confluent Schema Registry integration.
  • Confluent Cloud configuration.

Also refer to the API documentation.

Finally, the tests are useful as a reference for example usage.

Basic Producer Example

from confluent_kafka import Producer

p = Producer({'bootstrap.servers': 'mybroker1,mybroker2'})

def delivery_report(err, msg):
    """ Called once for each message produced to indicate delivery result.
        Triggered by poll() or flush(). """
    if err is not None:
        print('Message delivery failed: {}'.format(err))
    else:
        print('Message delivered to {} [{}]'.format(msg.topic(), msg.partition()))

for data in some_data_source:
    # Trigger any available delivery report callbacks from previous produce() calls
    p.poll(0)

    # Asynchronously produce a message. The delivery report callback will
    # be triggered from the call to poll() above, or flush() below, when the
    # message has been successfully delivered or failed permanently.
    p.produce('mytopic', data.encode('utf-8'), callback=delivery_report)

# Wait for any outstanding messages to be delivered and delivery report
# callbacks to be triggered.
p.flush()

For a discussion on the poll based producer API, refer to the Integrating Apache Kafka With Python Asyncio Web Applications blog post.

Basic Consumer Example

from confluent_kafka import Consumer

c = Consumer({
    'bootstrap.servers': 'mybroker',
    'group.id': 'mygroup',
    'auto.offset.reset': 'earliest'
})

c.subscribe(['mytopic'])

while True:
    msg = c.poll(1.0)

    if msg is None:
        continue
    if msg.error():
        print("Consumer error: {}".format(msg.error()))
        continue

    print('Received message: {}'.format(msg.value().decode('utf-8')))

c.close()

Basic AdminClient Example

Create topics:

from confluent_kafka.admin import AdminClient, NewTopic

a = AdminClient({'bootstrap.servers': 'mybroker'})

new_topics = [NewTopic(topic, num_partitions=3, replication_factor=1) for topic in ["topic1", "topic2"]]
# Note: In a multi-cluster production scenario, it is more typical to use a replication_factor of 3 for durability.

# Call create_topics to asynchronously create topics. A dict
# of <topic,future> is returned.
fs = a.create_topics(new_topics)

# Wait for each operation to finish.
for topic, f in fs.items():
    try:
        f.result()  # The result itself is None
        print("Topic {} created".format(topic))
    except Exception as e:
        print("Failed to create topic {}: {}".format(topic, e))

Thread Safety

The Producer, Consumer and AdminClient are all thread safe.

Install

Install self-contained binary wheels

$ pip install confluent-kafka

NOTE: The pre-built Linux wheels do NOT contain SASL Kerberos/GSSAPI support. If you need SASL Kerberos/GSSAPI support you must install librdkafka and its dependencies using the repositories below and then build confluent-kafka using the instructions in the "Install from source" section below.

To use Schema Registry with the Avro serializer/deserializer:

$ pip install confluent-kafka[avro,schemaregistry]

To use Schema Registry with the JSON serializer/deserializer:

$ pip install confluent-kafka[json,schemaregistry]

To use Schema Registry with the Protobuf serializer/deserializer:

$ pip install confluent-kafka[protobuf,schemaregistry]

When using Data Contract rules (including CSFLE) add the rulesextra, e.g.:

$ pip install confluent-kafka[avro,schemaregistry,rules]

Install from source

For source install, see the Install from source section in INSTALL.md.

Broker Compatibility

The Python client (as well as the underlying C library librdkafka) supports all broker versions >= 0.8. But due to the nature of the Kafka protocol in broker versions 0.8 and 0.9 it is not safe for a client to assume what protocol version is actually supported by the broker, thus you will need to hint the Python client what protocol version it may use. This is done through two configuration settings:

  • broker.version.fallback=YOUR_BROKER_VERSION (default 0.9.0.1)
  • api.version.request=true|false (default true)

When using a Kafka 0.10 broker or later you don't need to do anything (api.version.request=true is the default). If you use Kafka broker 0.9 or 0.8 you must set api.version.request=false and set broker.version.fallback to your broker version, e.g broker.version.fallback=0.9.0.1.

More info here: https://github.com/edenhill/librdkafka/wiki/Broker-version-compatibility

SSL certificates

If you're connecting to a Kafka cluster through SSL you will need to configure the client with 'security.protocol': 'SSL' (or 'SASL_SSL' if SASL authentication is used).

The client will use CA certificates to verify the broker's certificate. The embedded OpenSSL library will look for CA certificates in /usr/lib/ssl/certs/ or /usr/lib/ssl/cacert.pem. CA certificates are typically provided by the Linux distribution's ca-certificates package which needs to be installed through apt, yum, et.al.

If your system stores CA certificates in another location you will need to configure the client with 'ssl.ca.location': '/path/to/cacert.pem'.

Alternatively, the CA certificates can be provided by the certifi Python package. To use certifi, add an import certifi line and configure the client's CA location with 'ssl.ca.location': certifi.where().

License

Apache License v2.0

KAFKA is a registered trademark of The Apache Software Foundation and has been licensed for use by confluent-kafka-python. confluent-kafka-python has no affiliation with and is not endorsed by The Apache Software Foundation.

Developer Notes

Instructions on building and testing confluent-kafka-python can be found here.

Confluent Cloud

For a step-by-step guide on using the Python client with Confluent Cloud see Getting Started with Apache Kafka and Python on Confluent Developer.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

confluent_kafka-2.8.2.tar.gz (191.8 kB view details)

Uploaded Source

Built Distributions

confluent_kafka-2.8.2-cp313-cp313t-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.2-cp313-cp313-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.13 Windows x86-64

confluent_kafka-2.8.2-cp313-cp313-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.2-cp313-cp313-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.2-cp313-cp313-macosx_13_0_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.13 macOS 13.0+ x86-64

confluent_kafka-2.8.2-cp313-cp313-macosx_13_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.13 macOS 13.0+ ARM64

confluent_kafka-2.8.2-cp312-cp312-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

confluent_kafka-2.8.2-cp312-cp312-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.2-cp312-cp312-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.2-cp312-cp312-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

confluent_kafka-2.8.2-cp312-cp312-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

confluent_kafka-2.8.2-cp311-cp311-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

confluent_kafka-2.8.2-cp311-cp311-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.2-cp311-cp311-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.2-cp311-cp311-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

confluent_kafka-2.8.2-cp311-cp311-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

confluent_kafka-2.8.2-cp310-cp310-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

confluent_kafka-2.8.2-cp310-cp310-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.2-cp310-cp310-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.2-cp310-cp310-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

confluent_kafka-2.8.2-cp310-cp310-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

confluent_kafka-2.8.2-cp39-cp39-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

confluent_kafka-2.8.2-cp39-cp39-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.2-cp39-cp39-manylinux_2_28_aarch64.whl (15.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.2-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

confluent_kafka-2.8.2-cp39-cp39-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

confluent_kafka-2.8.2-cp38-cp38-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

confluent_kafka-2.8.2-cp38-cp38-manylinux_2_28_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.2-cp38-cp38-manylinux_2_28_aarch64.whl (15.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.2-cp38-cp38-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

confluent_kafka-2.8.2-cp38-cp38-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

confluent_kafka-2.8.2-cp37-cp37m-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

confluent_kafka-2.8.2-cp37-cp37m-manylinux_2_28_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

confluent_kafka-2.8.2-cp37-cp37m-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

confluent_kafka-2.8.2-cp37-cp37m-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file confluent_kafka-2.8.2.tar.gz.

File metadata

  • Download URL: confluent_kafka-2.8.2.tar.gz
  • Upload date:
  • Size: 191.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.0

File hashes

Hashes for confluent_kafka-2.8.2.tar.gz
Algorithm Hash digest
SHA256 e8cac2a00968c587d7e7a8fbb6b2d3c2eb0d342d42fdf1fdc36c10036b944bf3
MD5 84033195c89fb22b19ad5cd200e93aca
BLAKE2b-256 4b4d4ba3dcb54a1f84d2fc3abde259da568cfd398137c1c30f44ac9aede2b3ab

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp313-cp313t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp313-cp313t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1eaf441620918600bd8dcfb0e38f2102bf735938ba4d87b057bddacd1fa46262
MD5 aa753aa6170c32a7180de30073337e0f
BLAKE2b-256 f9f6cbfc0f21352ee7e6d6957ca9f0c3bbd1845827f1ee539feabc3952cd385d

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 60c6b77179301366410b35bbd224099a43061c983047329b69ed594f86240e7a
MD5 93bdd43ad998e15c307ef509d529f476
BLAKE2b-256 4c3bd378fbeeb1d2fbba60f17821ef8a793f821d46212048e083ee04edc812aa

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6ea4f733aaa2c6363adb8cd1cfeda16599642c472e479cea66c6b298325df0aa
MD5 760edb4b110bb0dcc80f0a6de75967b4
BLAKE2b-256 a4d119f720ec099166737df36cbe608b40f106914c5536c5e9d97ee8b400c64e

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9171a75ef2430eb04dea4b433de7ae20db063b7cea2318cb0e6394175a153f6f
MD5 5c2ab2b61b0458b7b541a1d5a4346317
BLAKE2b-256 810a123e72bca95f06da1e226fd4a7d2c03aedb43a5b13d01ebdaf25141f0ee0

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp313-cp313-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp313-cp313-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 8eb18f6908aa10cb1f410b429abcb0a62d0ca0daf4386ef3784022d0779d236e
MD5 e8046e8c9f7c61e855499982ea067f4b
BLAKE2b-256 9096867177cd1f39ec956b91817a7211c285dba1118b2ce9a6c9f57c472e128b

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp313-cp313-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp313-cp313-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 0974d544bf8b0f23cae70852e53a4e7fec1af7fc83222b302f3ce8855d3ff70b
MD5 e0d5a12c1fa0cc1466aacb7b3985e3a9
BLAKE2b-256 9a4d87b809737f74c77a89848e278cde380bdf725bf2c0ab2055d93ca5448697

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 77eb22389c5d95a5d4b8a5713ee3f9ad084cbd19107eb80f51678f676fc3a27f
MD5 8856936b9147610c1919fb4520a5bf1f
BLAKE2b-256 c029097bc30d3eba5fac5a1e546afa171a3042dab837a940bfe770168e599372

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9ca5a6ddd6401684d6e7237e11efb112087e4c4c4535503e07fc3385e52b2f16
MD5 7860579e3f4d2998a190378a7a310d42
BLAKE2b-256 7d61f9bbb1b5c52656ecd5397d9ac6db26ed5f03824c92e7ecd17a8c31b0d572

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2cb254a1d53af672cd0d9f3b34492cb5ca4dae829cecc48292afedd199312f06
MD5 7226b004159641afd5c95d7551928e49
BLAKE2b-256 7ce2dce865f8c2152a0b8c4bb515b9347a86b94130fe06105a9551ff4b06e8e0

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cd8f33fb94258b676c7c86520f572e2866405056bb31c3425d01fbe0a21f6883
MD5 94c920a266d9e7416344aa5a4792eeca
BLAKE2b-256 37f2b0fc96554750d1d611739556f9501f454cb91de236dd168c13488e516843

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b632a230abee16b03bdfbb931eb6cdd05a3b9474066b5dcae01550a0faf7cbaf
MD5 46347f1a7d2111e6fcc9c1b690266e38
BLAKE2b-256 3246b119db08602e4fba8e2f6fc9d74df3bca746680229565a7b710e8bc0474e

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1969bfb672a7c55d1bcacd54d3c2cf90f45dbef29a5934828d439cafded31dc9
MD5 37ea9d7b74e7330f05f40dcf291c96f0
BLAKE2b-256 a87d3fcf018c59bdb3d686af84ed42409681cec9a51028ef484a4862e017d887

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fd10d521873e7d2f64c7d1bc0ee1fc27434d7bc45e50e8a8abf7e8366e38002a
MD5 33d7ce576eb489b302849e89ce870591
BLAKE2b-256 ebba6ea067c10c1177b88e15b3b4798c869917114b7de974fefca49a54c8f5f2

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 882b67c076661be252dca962fe7f26c92e8da23b6607618e6512e462750e7f83
MD5 c472395d910dd73dd02c51b5b7f06fbc
BLAKE2b-256 e6d11a9e2402eccaf65aed478aa82aaa12de92be3b20517c7001252df0554148

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 38e0c4809670d9a6a3e268b82793db90fe408a569f7215266abd27b52b7ecf3d
MD5 e089cab7dc0be818e195540a925b6f9a
BLAKE2b-256 cef0781dd72c4eea2d74b5e7bac5957aacf33d2517ce9fbae11db3f2723419bc

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 958be78c89e25f2506ef39ee0251c171b9cd3f771ad7687ab56165e8e32b7df1
MD5 bda696fb26ba19cafa4b40c8bbeab17a
BLAKE2b-256 61a88ac263f8a640bcc8faa48c3cd66964547a0953ba00e73811f0f4958a248e

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 835594da79e09cb239a0d9434af556d8ca6bedb4d7efc1995adf085ca44aaca6
MD5 ea33916741ca4d840c3785bba30aaf01
BLAKE2b-256 55ceb35445366a54fb83f61959d0a41c609dd6633eee95876b5b97f7ba8801d0

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bf6cff008f407cb9c2eac6465c858402980af81355a94dc0070f6ac70b014aa5
MD5 e9d014decccdd713dcb68c5746c4a16f
BLAKE2b-256 7c327fa08fb8b7661e99373055217a8e1aa7bdf0c7ce296ee3d48e6fea555805

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 fae2edce2e4f9b0455d60e1590421ea36e5a31562073663c39446feedf804f19
MD5 4cc5c32ca38ba87dda61c6d3531d2d54
BLAKE2b-256 c6eafdc156c9374d8bb21aa06308df92c6a373b9db93585ed52beacdb99b0b95

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8fa24b18a1dfa7afa22124a4c417c991d3a7e5639c968c5993724d0e6b55069e
MD5 0c21a39a104efb8d2244f48b3d8d6b8b
BLAKE2b-256 00662475f88e061142f5e3973404c227c196a31a6fc8f67f5b3c04b838841eb5

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2de2540246d01ec73f6ccbbe189106c97e828ff99d5803b4b629639d3fcf61bd
MD5 6aac7ed0f0a0ded6651fbf1853aaa00d
BLAKE2b-256 737f717720df8af810756bc92e7e2644487215692afd8089eb67547a547b3a1e

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5b4471c7ced93407c2c8ee89d7735cbc387aaa3f68707201e7351ce03f59647c
MD5 03a9a47e6e1d9cde26b6b5566c22326b
BLAKE2b-256 a7472b4dc6195ac5ae9fc6ca55ab714c101a81956a040caf16beaf8196b7d40a

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 356d0a27bf350da69fea80d982b777a6b87f91f4b2326b3c8b061e3a01bcdd60
MD5 d236f3eb21dfcac1b752c84b8f68d06e
BLAKE2b-256 bc0b3344d866a738d5e7272c0647f3f0258be3104b5369a7ba887ba6638641ce

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5e49281da59dbefc9ea0f41431e1604a629076ff9ad9cadf9258f4a57b12f968
MD5 36f4f5ddf3006ff77538a47b96e5ac53
BLAKE2b-256 3e5f8a312d89bde0f4ef0db0ea6b5245b92fb98d2c372915aa2ad792844bbb03

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b179d792c9ccecbb5d358db8bc16f01798f55ba3f0f281f6b2d698541489cd47
MD5 b94710d06589af41797fe3e54c7aff71
BLAKE2b-256 9a107ae0213025cb934dd6ad65cdcae7f36ac4814fdb0ff83398b2051de9aba3

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c1206376218e083a9a962c20fabb881b995b63e8ff55d2ee3408a7527de5584f
MD5 83925bb7daecb48268e1c28bcc2c8e6a
BLAKE2b-256 61cbdcd133fb1768538e45e913a2a9091e72a8f3cbcb1da0afdf1ebf39d0beeb

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 41f646f924a77e5d2dcc1d421d24130bf8e518f80043c5b740c1763bf5c79f25
MD5 34a099b4be089accd2d458a1db33bca4
BLAKE2b-256 7549f732befcab786206580ed055b76b56b9624682d9ccd94f8f3698bd202b72

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5093c3d2dde81ac1dccf5355bcab4f28c8c39f3501b18d910cbdc08cb0b2b946
MD5 656a0da30886ad607251750c69d9cf67
BLAKE2b-256 0076510724fbb47724f85435b96727cca74d95ac3aece40e3088904f120fa4b3

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5c5a7490c2c593d8fb84fb10ae95ec9ec631fb229c64e307247a3d1558b7f3e7
MD5 d97121100b1514cf40f223d93e9d4c88
BLAKE2b-256 20b8d381b15808f4b780975b8facd9dedbba4afc695d9c2339e9e80c4e5c63e6

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 696689124df8734f6f8ed2edf7d0036d66acdff2c3915078e66b73aebef6b333
MD5 bf0add3f60d650e44d3898be183fa843
BLAKE2b-256 b4cff3fb309929d5fc4fabc63d0ec93c996caae5b6898f3bfb4c30a0ca0a010c

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 59411423ebb9804743f4b409b352af93c003bd2bd929890744e3c95f4c76d37a
MD5 ff583f3ab9f232c25c30d817706b5f20
BLAKE2b-256 17140742679860424d63ce8b3d28618f57d792c44a0d1c415d1a46fde131f5ab

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 169788daf3f6a45e50df3e8ebce5beec5ecd1387edebac181291de5d92db58c5
MD5 357761c0c9b039347e2e6f3f8607289b
BLAKE2b-256 b9bcfad7acc845c9773c049f6ef8a7d40d0c302a10de645e2541486c992d3750

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5cf86372a660e29363c9165014227fd492923887efb3fea85373bb67cbd8a1a3
MD5 c100e37377b15157bed18b4ef44a5cc9
BLAKE2b-256 6c56228427bc424717fb803c1fe5ad0c9e3db907bb54989ac4ac8c425e194c32

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d78deb8a443dc4ba2ed21c4902da9b78fba469b7ceeac92f4e1db739a74b512e
MD5 0b34e9d95cf64f0744d9118671e3787b
BLAKE2b-256 533938b3cfd7cc0d0507c075b30bd2f43962235edc046e83d79199791de57541

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.8.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.8.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec6c0e72c2b8d8d19209a094ddbb87579973b096f7490229aff5c0a1603aef38
MD5 d53a38b995128f3331b5e9aef265cb1b
BLAKE2b-256 2a816f64854bd467bddac5ea9b40f9dee7be95f90c8b7db229afb8e83bf47269

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page