Confrmal Based Impact Analysis.
Project description
Conformal Impact
Take Causal Impact and replace the Bayesian Structural Time Series Model with MFLES and the Basyesian posterior with Conformal Prediction Intervals.
Quick Examnple an comparison to Causal Impact
intervention_effect = 400
np.random.seed(42)
series = np.random.random((130, 1)) * 400
x_series = series * .4 + np.random.random((130, 1)) * 50 + 1000
trend = (np.arange(1, 131)).reshape((-1, 1))
series += 10 * trend
series[-30:] = series[-30:] + intervention_effect
data = pd.DataFrame(np.column_stack([series, x_series]), columns=['y', 'x1'])
import matplotlib.pyplot as plt
plt.plot(series)
plt.plot(x_series)
plt.show()
from ConformalImpact.Model import CI
conformal_impact = CI(opt_size=20,
opt_steps=10,
opt_step_size=3)
impact_df = conformal_impact.fit(data,
n_windows=30,
intervention_index=100,
seasonal_period=None)
conformal_impact.summary()
conformal_impact.plot()
from causalimpact import CausalImpact
impact = CausalImpact(data, [0, 99], [100, 130])
impact.run()
impact.plot()
print(impact.summary())
output = impact.inferences
np.mean(output['point_effect'].values[-30:])
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file ConformalImpact-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: ConformalImpact-0.0.3-py3-none-any.whl
- Upload date:
- Size: 4.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 21219c14df14602c8da2c19c33eeef79770be3d573173ac30bb323eb34705263 |
|
MD5 | f7a6d2354a7ed6cce5f03f645d5f506e |
|
BLAKE2b-256 | 9a059c1d22ab89817a45ce0b324945634944ae6b264b8c2774ecf3afb4c1a82c |