Skip to main content

Confidence sequences and uniform boundaries

Project description

Confidence sequences and uniform boundaries

This library supports calculation of uniform boundaries, confidence sequences, and always-valid p-values. These constructs are useful in sequential A/B testing, best-arm identification, and other sequential statistical procedures. The main reference is

S. R. Howard, A. Ramdas, J. McAuliffe, J. Sekhon. Uniform, nonparametric, non-asymptotic confidence sequences. Preprint, arXiv:1810.08240.

This library is in early-stage development and should not be considered stable. I have tested it only on Python 3.7.0 on macOS Mojave. The implementation is in C++ and a compiler with C++14 support is required to build the package.

Installing the python package

Run pip install confseq.

Demos

Estimating average treatment effect in a randomized trial

demo/ate_demo.py illustrates how to compute a confidence sequence for average treatment effect in a randomized trial with bounded potential outcomes, along with an always-valid p-value sequence. The method is based on Corollary 2 of the paper and uses the gamma-exponential mixture boundary. This demo requires numpy and pandas.

Uniform boundaries

The confseq.boundaries module implements several uniform boundaries from the paper.

  • There are four mixture boundaries. These are implemented by the functions <TYPE>_log_mixture() and <TYPE>_mixture_bound(), where <TYPE> is one of normal (Propositions 4 and 5), gamma_exponential (Proposition 8), gamma_poisson (Proposition 9), or beta_binomial (Propositions 6 and 7).

    • <TYPE>_log_mixture(s, v, ...) returns the logarithm of the mixture supermartingale when called with S_t, the martingale, and V_t, the intrinsic time process. The reciprocal of the exponential of this value is an always-valid p-value. These functions are denoted log(m(s,v)) in the paper.
    • <TYPE>_mixture_bound(v, alpha, ...) returns the uniform boundary with crossing probability at most alpha, evaluated at intrinsic time v.

    Each function takes another required argument v_opt and an optional argument alpha_opt=0.05. These arguments are used to set the tuning parameter for each mixture, denoted by rho or r in the paper, optimizing the uniform boundary with crossing probability alpha_opt for intrinsic time v_opt. Such tuning is discussed in section 3.5 of the paper.

    The gamma-exponential and gamma-Poisson mixtures also require a scale parameter c. The beta-binomial mixture requires range parameters g and h. Finally, the normal_* and beta_binomial_* functions accept an optional boolean parameter is_one_sided which is True by default. If False, the two-sided variants of these mixtures are used (Propositions 4 and 6).

  • The polynomial stitching boundary (see Theorem 1 and the subsequent example) is implemented by poly_stitching_bound. Besides v and alpha, this function requires the tuning parameter v_min as well as optional parameters c, s, and eta, all documented in the paper.

C++ library

The underlying implementation is in a single-file, header-only C++ library in src/confseq/uniform_boundaries.h. The top of the file defines a simplified interface mirroring the Python interface described above. Below that is an object-oriented interface useful for more involved work. The confseq.boundaries Python module is a wrapper generated by pybind11.

Unit tests

Run make -C /path/to/confseq/tests runtests to run the C++ unit tests.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

confseq-0.0.1.tar.gz (5.0 kB view hashes)

Uploaded Source

Built Distribution

confseq-0.0.1-cp37-cp37m-macosx_10_13_x86_64.whl (133.9 kB view hashes)

Uploaded CPython 3.7m macOS 10.13+ x86-64

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page