Skip to main content

Coniferous forests for better machine learning

Project description

coniferest

PyPI version Documentation Status Test Workflow Build and publish wheels pre-commit.ci status

Package for active anomaly detection with isolation forests, made by SNAD collaboration.

It includes:

  • IsolationForest - reimplementation of scikit-learn's isolation forest with much better scoring performance due to the use of Cython and multi-threading (the latter is not currently available on macOS).
  • AADForest - reimplementation of Active Anomaly detection algorithm with isolation forests from Shubhomoy Das' ad_examples package with better performance, much less code and more flexible dependencies.
  • PineForest - our own active learning model based on the idea of tree filtering.

Install the package with pip install coniferest.

See the documentation for the Tutorial.

Installation

The project is using Cython for performance and requires compilation. However, binary wheels are available for Linux, macOS and Windows, so you can install the package with pip install coniferest on these platforms with no build-time dependencies. Currently multithreading is not available in macOS ARM wheels, but you can install the package from the source to enable it, see instructions below.

If your specific platform is not supported, or you need a development version, you can install the package from the source. To do so, clone the repository and run pip install . in the root directory.

Note, that we are using OpenMP for multi-threading, which is not available on macOS with the Apple LLVM Clang compiler. You still can install the package with Apple LLVM, but it will be single-threaded. Alternatively, you can install the package with Clang from Homebrew (brew install llvm libomp) or GCC (brew install gcc), which will enable multi-threading. In this case you will need to set environment variables CC=gcc-12 (or whatever version you have installed) or CC=$(brew --preifx llvm)/bin/clang and CONIFEREST_FORCE_OPENMP_ON_MACOS=1.

Development

You can install the package in editable mode with pip install -e .[dev] to install the development dependencies.

Linters and formatters

This project makes use of pre-commit hooks, you can install them with pre-commit install. Pre-commit CI is used for continuous integration of the hooks, they are applied to every pull request, and CI is responsible for auto-updating the hooks.

Testing and benchmarking

We use tox to build and test the package in isolated environments with different Python versions. To run tests locally, install tox with pip install tox and run tox in the root directory. We configure tox to skip long tests.

The project uses pytest as a testing framework. Tests are located in the tests directory, and can be run with pytest tests in the root directory. By default, all tests are run, but you can select specific tests with -k option, e.g. pytest tests -k test_onnx.test_onnx_aadforest. You can also deselect a specific group of tests with -m option, e.g. pytest tests -m'not long', see pyproject.toml for the list of markers.

We use pytest-benchmark for benchmarking. You can run benchmarks with pytest tests --benchmark-enable -m benchmark in the root directory. You can adjust the minimum number of iterations with --benchmark-min-rounds and maximum execution time per benchmark with --benchmark-max-time (note that the latter can be exceeded if the minimum number of rounds is not reached). See pyproject.toml for the default benchmarking options. You can make a snapshot the current benchmark result with --benchmark-save=NAME or with --benchmark-autosave, and compare benchmarks with pytest-benchmark compare command.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coniferest-0.0.11.tar.gz (19.3 MB view details)

Uploaded Source

Built Distributions

coniferest-0.0.11-cp311-cp311-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

coniferest-0.0.11-cp311-cp311-win32.whl (9.1 MB view details)

Uploaded CPython 3.11 Windows x86

coniferest-0.0.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

coniferest-0.0.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

coniferest-0.0.11-cp311-cp311-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

coniferest-0.0.11-cp311-cp311-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

coniferest-0.0.11-cp310-cp310-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

coniferest-0.0.11-cp310-cp310-win32.whl (9.1 MB view details)

Uploaded CPython 3.10 Windows x86

coniferest-0.0.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

coniferest-0.0.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

coniferest-0.0.11-cp310-cp310-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

coniferest-0.0.11-cp310-cp310-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

coniferest-0.0.11-cp39-cp39-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

coniferest-0.0.11-cp39-cp39-win32.whl (9.1 MB view details)

Uploaded CPython 3.9 Windows x86

coniferest-0.0.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

coniferest-0.0.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

coniferest-0.0.11-cp39-cp39-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

coniferest-0.0.11-cp39-cp39-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

coniferest-0.0.11-cp38-cp38-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

coniferest-0.0.11-cp38-cp38-win32.whl (9.1 MB view details)

Uploaded CPython 3.8 Windows x86

coniferest-0.0.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

coniferest-0.0.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

coniferest-0.0.11-cp38-cp38-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

coniferest-0.0.11-cp38-cp38-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

coniferest-0.0.11-cp37-cp37m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

coniferest-0.0.11-cp37-cp37m-win32.whl (9.1 MB view details)

Uploaded CPython 3.7m Windows x86

coniferest-0.0.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

coniferest-0.0.11-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

coniferest-0.0.11-cp37-cp37m-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file coniferest-0.0.11.tar.gz.

File metadata

  • Download URL: coniferest-0.0.11.tar.gz
  • Upload date:
  • Size: 19.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for coniferest-0.0.11.tar.gz
Algorithm Hash digest
SHA256 40d9d8ad2c9a9597c4eed5e3ec84ce59197d61e8513a9d56d3ff8658e1a9c399
MD5 b811cbad71179867f17bd9472a965ef9
BLAKE2b-256 ded86f819b6beac7e856a85f5457d072c4b42680fe8065c2902bbc56d367f85c

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e16b117b6f05fd3b31ed6a52cc7723bdc00e626e54f4e4409544ef59e05065ba
MD5 49133519e26af1a8f023d52063607789
BLAKE2b-256 7acb15c99b17b4a835bdbaedc225f175a9260809d057b5db60587789b14a8bd1

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 caacdd43ff65febb2313ffd8919394d615decdc9626234628aa7f818239cc03b
MD5 973cdcab86aba496ec2f5e02ffe91cd3
BLAKE2b-256 6c6583b5758b955d0de65a71e1995b22c87c382695cedc291b5bdfaad47e3c19

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c123e8dd64af8f825a76d3050619a6d8aa44c6a23d67a7e3d042e7fcb733fc0f
MD5 d17c26557b884aabef719b596ee467e6
BLAKE2b-256 82a440c2922098271d13dc08421c2d9886e82ea5e4d287a017df60455489633b

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c07b40f95ca7bdcb9b328ba3feeab6660931fc614364fafc015d328f85ca031
MD5 a8c48229105ed6b7ba5cf450c65e827a
BLAKE2b-256 69fb0c150e38759aad44371443ba76a732ec38018d3de4db13520989d9c00e63

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c32f35c081ce8b5c8b9de2a6c06e5a2d99c9ec7fed25de21dae1908fae0eb303
MD5 3765cf2c5fc2cca7943d9046d89fc7b2
BLAKE2b-256 68636f5545227e706b32522176fb005688463fe3ec7b31475eeb74cf7ff7de7e

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e98ecf620062ade9f3a1aac013c2d6134a581323978b5d56c4f348426b34757
MD5 28732fa66a88d857617b4929259bdb82
BLAKE2b-256 b2a3308745be9910635dfc55ee9a2e1f02dbc0cffc113287f89612d32ad72c5d

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 24a056807a3ac65ed274e89a258ac87cb01be124f6752a5803f6081f5be06c8d
MD5 01972136daf811d6bb35186fa416fc45
BLAKE2b-256 557656845e153492ae5aaaa25769cbc27087fb281e8e64837e56fa6d16da5734

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d502884db4dac5e3340905b8f2f88de0e9024575d23fc6de4487c62e341a6b46
MD5 5a0ba6f80a211536afd6296caaa02345
BLAKE2b-256 ef2f8ac821b663980c7e6449d85337cab06c3d260b9d77a08e676c35d0606f7c

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb90d4cca61f31bb66856ec046cf27dceaae103f11c4345a7b1d61a62187b7e6
MD5 df54cb901c42581e1217ac126cdb59e7
BLAKE2b-256 0e5b0641cc296829e49bf8e836523fc72957224fd3944f9e34e702cd96a65bff

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2888c4f8d51674390e773496afa54b92d6a1134294f3ae735f8237f714470441
MD5 167c1e25e43513c3e55ea8382c3c89df
BLAKE2b-256 ce6353ee0253c60ed44562f7c502e353d2fc1beaf59360b73def1fd55560853b

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7dfff558d9530f873fac5a9190feabe4fca476b3f229a1caa8388d6611f8cc03
MD5 6f1d16c44f7c2e1ae68aada88a1ea084
BLAKE2b-256 6ac81ece1a1d384a8019932f0986ea5a4299738ff2dbb271c5b238104e20bf6f

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d688a8095c7586c85d37d8b27472338bb2491ff2b145861bc66e74ef2bed5781
MD5 398ca233abe246267ab9ed13c5739fce
BLAKE2b-256 2d8dd2b534baae43bbdeddb5933905eecc7dd608c06b8c05f2d60f14873650b5

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cc40130727bdf9e73bfb7a4b2c31ab8f84bb714362be6c91daa07f1a9e428502
MD5 aad752ed6725db08aa6425f484141f3f
BLAKE2b-256 8072d57dc2244cb362f6a3faa6b69d05b34915c12a71606e6488439652ce9a2b

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp39-cp39-win32.whl.

File metadata

  • Download URL: coniferest-0.0.11-cp39-cp39-win32.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for coniferest-0.0.11-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e46919e50577a163b62d57d03a3e2d2eaa05b9e933a6c006f24db34a97d4b26c
MD5 a87d34be85782fd7d6e2e6acc9b3e18b
BLAKE2b-256 b5e4c5b08305630b39fa955e9f7ccfdec811cca3468a6a10a6b50d191ad2a11b

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a0a8a5397bc0d828f8600f8816cc9de10eaf2360ee566791a6d101d8f4e601e
MD5 6eec1c6b6a527ea714cf24421b373311
BLAKE2b-256 4efe722a3321ad6a2316c17070dabafbe1e3810ac81ac6016892362edeb8fd3a

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 538415f753d708c9cf147426241a10efcb80c026708ae3f377a4720d5e32a108
MD5 a54260d022b9f1fae6886da0fbfd348c
BLAKE2b-256 b058d304945591ab9823e77053a1ffba08e2a8af463d7992f53deb636427587e

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9a8b2b1969839b8879830fb04854be8878edd2e0c0b12555055cd723b85efcb1
MD5 5c7e71072357bd69a935a5663c199de3
BLAKE2b-256 c5a79b469d0cfb62dea55480754788adfe06e72b5307e9b22e0e19bd4a6ac32b

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7c3f232795d97ad5629c0f3162be21082d4561dff0c7307adb4fbb1afba771d8
MD5 f7fa174a2266ae076bd23b744f3ad9d0
BLAKE2b-256 625c535f8e9f593539d526b67b7ef1c0c8e195db803939169c548ca2b12c1156

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ddf144ead0a2b7ab9782e050aabb2de2cb431290edf65526a83746672c8f0f61
MD5 b3c9fb0a3c602a4a45797dc0d95c5bb8
BLAKE2b-256 02eefa0c3863072d60f453c78e0c3a358148d9b2e980f2a0d1f797726e4bc921

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp38-cp38-win32.whl.

File metadata

  • Download URL: coniferest-0.0.11-cp38-cp38-win32.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for coniferest-0.0.11-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6d742814413a7d615f69b716fecf0a8a5acd9337837e8ca50146a3e5f8e9c075
MD5 d0f75426017b4cd062ece5b932aebfd1
BLAKE2b-256 80d8892efd1bbbee1829422b90ac0b7d5138196420b89fbc59f0a3e48f942682

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0938c845301302b271494ffe8f33bb73faa2ac9c6269eb97ed5863f5a81b2a7c
MD5 6c29c336c7eebb308398cfa4b9a2896c
BLAKE2b-256 a4f4e2fede8af12d59db2a95ed3a21d96608ad8f569300d81dae10ee3b99c700

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ef582add5861dafacec92da27b1884569d3fcfcfd22647c0f8158f6b74e5a964
MD5 109b2915633c4d9106cc047dbf293fcd
BLAKE2b-256 d4d03b27e5d5c3c98fa8ce8fdc02ea320ee8702d922c24a3fd52a8d78527c39b

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bc59f02e14fc5a098ff559f05472d62ff21ff22588a43d12cce6f803d6b813fa
MD5 1a8bac055ac10ce19ffc85360c769976
BLAKE2b-256 f637ce8c9b65f6edcf7c55a3d8593fbdeb066d90d7708a4f638d594d02f5cf8c

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a935c1be1e07ef115c64cb138a701f5f78dd3f9958b65b3a87d66bc56fcc5e1
MD5 9a32e743acaf52acd2ff3a9ad4863af7
BLAKE2b-256 13627266432bdb8c4cf62123b0369cd8e45bdefa4ed0bd34f645fa797142330d

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b2b92be7a93731c5f778bf7fe915cbec2d603228f1727bfb684b240e2fd82a12
MD5 a6c1cd3014a7c96733efc88200d15c29
BLAKE2b-256 70614464ee5f9d9f7c59f9506ae8a41c3999869d1c06524fd40a4611e3631cb0

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp37-cp37m-win32.whl.

File metadata

  • Download URL: coniferest-0.0.11-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for coniferest-0.0.11-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2e10b794f7770f1589bc4f8b74b4195f8ad2198d318fa6d44c60acf7d1376372
MD5 beb6fa116df2fa2b8e84544879ddc317
BLAKE2b-256 9195fc4c5594be160014fc4c8cb4fc9b431b27e8c4e193451ba392e97ae71132

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41af46cacc28b4c7210f413a416c3ed2b37d3a6a9eec0fd93eb8e49efaae0263
MD5 81beee89aa74803e821db592e89584d1
BLAKE2b-256 e8806a2ce49a48ad506e892206c9559976df76fefc60aaa931865f5edc103cbe

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 78420691bdf1beb13430d60fd276ab8cf69163b74755b70dd84d93d607ff7a22
MD5 49b75dc90a4f32ded587e23852249b8d
BLAKE2b-256 17b7897897958dc92ab36a4a34c73ac4f86470b5446c694f2383a69cc27b4771

See more details on using hashes here.

File details

Details for the file coniferest-0.0.11-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for coniferest-0.0.11-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 726e9f74507bfea1b96f71a30bbf507ec35166121fd3177d1a7fb89307a1810a
MD5 230ae043d6e7efdca755e509b75080a7
BLAKE2b-256 b1ea5504b395937365061ef06343bc0f9905255579d9e8fd79b088c1271b90f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page