Skip to main content

A simple Python framework for creating AI agents with behavior tracking

Project description

ConnectOnion

๐Ÿšง Private Beta - ConnectOnion is currently in private beta. Join our waitlist to get early access!

A simple Python framework for creating AI agents that can use tools and track their behavior.

โœจ What's New

  • ๐ŸŽฏ Function-Based Tools: Just write regular Python functions - no classes needed!
  • ๐ŸŽญ System Prompts: Define your agent's personality and role
  • ๐Ÿ”„ Automatic Conversion: Functions become OpenAI-compatible tools automatically
  • ๐Ÿ“ Smart Schema Generation: Type hints become function schemas

๐Ÿš€ Quick Start

Installation

pip install -r requirements.txt

Basic Usage

import os  
from connectonion import Agent

# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "your-api-key-here"

# 1. Define tools as simple functions
def search(query: str) -> str:
    """Search for information."""
    return f"Found information about {query}"

def calculate(expression: str) -> float:
    """Perform mathematical calculations."""
    return eval(expression)  # Use safely in production

# 2. Create an agent with tools and personality
agent = Agent(
    name="my_assistant",
    system_prompt="You are a helpful and friendly assistant.",
    tools=[search, calculate]
)

# 3. Use the agent
result = agent.input("What is 25 * 4?")
print(result)  # Agent will use the calculate function

result = agent.input("Search for Python tutorials") 
print(result)  # Agent will use the search function

# 4. View behavior history (automatic!)
print(agent.history.summary())

๐Ÿ”ง Core Concepts

Agent

The main class that orchestrates LLM calls and tool usage. Each agent:

  • Has a unique name for tracking purposes
  • Can be given a custom personality via system_prompt
  • Automatically converts functions to tools
  • Records all behavior to JSON files

Function-Based Tools

NEW: Just write regular Python functions! ConnectOnion automatically converts them to tools:

def my_tool(param: str, optional_param: int = 10) -> str:
    """This docstring becomes the tool description."""
    return f"Processed {param} with value {optional_param}"

# Use it directly - no wrapping needed!
agent = Agent("assistant", tools=[my_tool])

Key features:

  • Automatic Schema Generation: Type hints become OpenAI function schemas
  • Docstring Integration: First line becomes tool description
  • Parameter Handling: Supports required and optional parameters
  • Type Conversion: Handles different return types automatically

System Prompts

Define your agent's personality and behavior with flexible input options:

# 1. Direct string prompt
agent = Agent(
    name="helpful_tutor",
    system_prompt="You are an enthusiastic teacher who loves to educate.",
    tools=[my_tools]
)

# 2. Load from file (any text file, no extension restrictions)
agent = Agent(
    name="support_agent",
    system_prompt="prompts/customer_support.md"  # Automatically loads file content
)

# 3. Using Path object
from pathlib import Path
agent = Agent(
    name="coder",
    system_prompt=Path("prompts") / "senior_developer.txt"
)

# 4. None for default prompt
agent = Agent("basic_agent")  # Uses default: "You are a helpful assistant..."

Example prompt file (prompts/customer_support.md):

# Customer Support Agent

You are a senior customer support specialist with expertise in:
- Empathetic communication
- Problem-solving
- Technical troubleshooting

## Guidelines
- Always acknowledge the customer's concern first
- Look for root causes, not just symptoms
- Provide clear, actionable solutions

History

Automatic tracking of all agent behaviors including:

  • Tasks executed
  • Tools called with parameters and results
  • Agent responses and execution time
  • Persistent storage in ~/.connectonion/agents/{name}/behavior.json

๐ŸŽฏ Example Tools

You can still use the traditional Tool class approach, but the new functional approach is much simpler:

Traditional Tool Classes (Still Supported)

from connectonion.tools import Calculator, CurrentTime, ReadFile

agent = Agent("assistant", tools=[Calculator(), CurrentTime(), ReadFile()])

New Function-Based Approach (Recommended)

def calculate(expression: str) -> float:
    """Perform mathematical calculations."""
    return eval(expression)  # Use safely in production

def get_time(format: str = "%Y-%m-%d %H:%M:%S") -> str:
    """Get current date and time."""
    from datetime import datetime
    return datetime.now().strftime(format)

def read_file(filepath: str) -> str:
    """Read contents of a text file."""
    with open(filepath, 'r') as f:
        return f.read()

# Use them directly!
agent = Agent("assistant", tools=[calculate, get_time, read_file])

The function-based approach is simpler, more Pythonic, and easier to test!

๐Ÿ”จ Creating Custom Tools

from connectonion.tools import Tool

class WeatherTool(Tool):
    def __init__(self):
        super().__init__(
            name="weather",
            description="Get current weather for a city"
        )
    
    def run(self, city: str) -> str:
        # Your weather API logic here
        return f"Weather in {city}: Sunny, 22ยฐC"
    
    def get_parameters_schema(self):
        return {
            "type": "object",
            "properties": {
                "city": {
                    "type": "string",
                    "description": "Name of the city"
                }
            },
            "required": ["city"]
        }

# Use with agent
agent = Agent(name="weather_agent", tools=[WeatherTool()])

๐Ÿ“ Project Structure

connectonion/
โ”œโ”€โ”€ connectonion/
โ”‚   โ”œโ”€โ”€ __init__.py     # Main exports
โ”‚   โ”œโ”€โ”€ agent.py        # Agent class
โ”‚   โ”œโ”€โ”€ tools.py        # Tool interface and built-ins
โ”‚   โ”œโ”€โ”€ llm.py          # LLM interface and OpenAI implementation
โ”‚   โ””โ”€โ”€ history.py      # Behavior tracking
โ”œโ”€โ”€ examples/
โ”‚   โ””โ”€โ”€ basic_example.py
โ”œโ”€โ”€ tests/
โ”‚   โ””โ”€โ”€ test_agent.py
โ””โ”€โ”€ requirements.txt

๐Ÿงช Running Tests

python -m pytest tests/

Or run individual test files:

python -m unittest tests.test_agent

๐Ÿ“Š Behavior Tracking

All agent behaviors are automatically tracked and saved to:

~/.connectonion/agents/{agent_name}/behavior.json

Each record includes:

  • Timestamp
  • Task description
  • Tool calls with parameters and results
  • Final result
  • Execution duration

View behavior summary:

print(agent.history.summary())
# Agent: my_assistant
# Total tasks completed: 5
# Total tool calls: 8
# Total execution time: 12.34 seconds
# History file: ~/.connectonion/agents/my_assistant/behavior.json
# 
# Tool usage:
#   calculator: 5 calls
#   current_time: 3 calls

๐Ÿ”‘ Configuration

OpenAI API Key

Set your API key via environment variable:

export OPENAI_API_KEY="your-api-key-here"

Or pass directly to agent:

agent = Agent(name="test", api_key="your-api-key-here")

Model Selection

agent = Agent(name="test", model="gpt-5")  # Default: gpt-5-mini

๐Ÿ› ๏ธ Advanced Usage

Multiple Tool Calls

Agents can chain multiple tool calls automatically:

result = agent.input(
    "Calculate 15 * 8, then tell me what time you did this calculation"
)
# Agent will use calculator first, then current_time tool

Custom LLM Providers

from connectonion.llm import LLM

class CustomLLM(LLM):
    def complete(self, messages, tools=None):
        # Your custom LLM implementation
        pass

agent = Agent(name="test", llm=CustomLLM())

๐Ÿšง Current Limitations (MVP)

This is an MVP version with intentional limitations:

  • Single LLM provider (OpenAI)
  • Synchronous execution only
  • JSON file storage only
  • Basic error handling
  • No multi-agent collaboration

๐Ÿ—บ๏ธ Future Roadmap

  • Multiple LLM provider support (Anthropic, Local models)
  • Async/await support
  • Database storage options
  • Advanced memory systems
  • Multi-agent collaboration
  • Web interface for behavior monitoring
  • Plugin system for tools

๐Ÿ“„ License

MIT License - see LICENSE file for details.

๐Ÿค Contributing

This is an MVP. For the full version roadmap:

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Submit a pull request

๐Ÿ“ž Support

For issues and questions:

  • Create an issue on GitHub
  • Check the examples/ directory for usage patterns
  • Review the test files for implementation details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

connectonion-0.0.1b3.tar.gz (37.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

connectonion-0.0.1b3-py3-none-any.whl (41.2 kB view details)

Uploaded Python 3

File details

Details for the file connectonion-0.0.1b3.tar.gz.

File metadata

  • Download URL: connectonion-0.0.1b3.tar.gz
  • Upload date:
  • Size: 37.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.7

File hashes

Hashes for connectonion-0.0.1b3.tar.gz
Algorithm Hash digest
SHA256 8c63fec578f9af710c3f21f637cd34942bc9765faba79ac54e9ee772879deb39
MD5 ccaba3e250af9d2f19907cd10fd719fe
BLAKE2b-256 6fedaa3f5fe90562abc8e25666d3b8a8ba21981cba5cc1c8acbb5a14bc2a2935

See more details on using hashes here.

File details

Details for the file connectonion-0.0.1b3-py3-none-any.whl.

File metadata

  • Download URL: connectonion-0.0.1b3-py3-none-any.whl
  • Upload date:
  • Size: 41.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.7

File hashes

Hashes for connectonion-0.0.1b3-py3-none-any.whl
Algorithm Hash digest
SHA256 73ee86308285ca22b23581a7f858e997b473a854314fc77b59bb43dbd206be4a
MD5 00ecf62bccb4f7680a81c59842271b90
BLAKE2b-256 72fd2cba98f6331c70281e03c28f0091275213133bad795333c02385f08cc6c9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page