Skip to main content

The library aims to provide a simple way to create individual consumer loads, generation.

Project description

Welcome to consmodel library 👋

Python Version

!!! Warning: the library is active and the functionalities are being added on weekly basis, some functionalities will also change !!!

The library aims to provide a simple way to create individual consumer loads and generation.

The library is a centralised modelling tool that implements the following consumption/generation consumptions:

  • pure consumption model,
  • solar plant model,
  • heat pump model,
  • electric vehicle modelling,
  • possibly other models...

The main idea of the library is to be able to easily create consumption or generation power consumption profiles.

The schema of the library is as follows:

🏠 Homepage

Install

pip3 install consmodel

Usage

PV model

   from consmodel import PV
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt

   # create a simple PV model
   pv = PV(lat=46.155768,
           lon=14.304951,
           alt=400,
           index=1,
           name="test",
           freq="15min",)
   timeseries = pv.simulate(pv_size=14.,
                            year=2022,
                            model="ineichen",
                            consider_cloud_cover=True)
   # plot the results
   timeseries.plot()
   plt.show()

BS model

   from consmodel import BS
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt

   # create a simple PV model
   test_consumption = [0.,-3.,-2.,8.,7.,6.,7.,8.,5.,4.,-2.]
   test_consumption_df = pd.DataFrame({"p": test_consumption},
                  index=pd.date_range("2020-01-01 06:00:00",
                                       periods=11,
                                       freq="15min"))
   bs = BS(lat=46.155768,
           lon=14.304951,
           alt=400,
           index=1,
           st_type="10kWh_5kW",
           freq="15min",)
   timeseries = batt.simulate(control_type="installed_power",
                              p_kw=test_consumption_df)
   # plot the results
   timeseries.plot()
   plt.show()

Consumer model

   from consmodel import ConsumerModel
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt

   cons = ConsumerModel(lat=46.155768,
                        lon=14.304951,
                        alt=400,
                        index=1,
                        name="ConsumerModel_default",
                        tz="Europe/Ljubljana",
                        use_utc=False,
                        freq="15min",)
   timeseries = cons.simulate(has_generic_consumption=False,
                              has_pv=True,
                              has_heatpump=True,
                              has_ev=False,
                              has_battery=True,
                              start=pd.to_datetime("2020-01-01 06:15:00"),
                              end=pd.to_datetime("2020-01-01 06:00:00")+pd.Timedelta("1d"),
                              pv_size=14.,
                              wanted_temp=20.,
                              hp_st_type="Outdoor Air / Water (regulated)",
                              bs_st_type="10kWh_5kW",
                              control_type="production_saving")
   timeseries.plot()
   plt.show()

Author

👤 Blaž Dobravec

Colaborated:

🤝 Contributing

Contributions, issues and feature requests are welcome!

Feel free to check issues page.

Show your support

Give a ⭐️ if this project helped you!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

consmodel-0.1.9.tar.gz (19.5 kB view details)

Uploaded Source

Built Distribution

consmodel-0.1.9-py3-none-any.whl (21.0 kB view details)

Uploaded Python 3

File details

Details for the file consmodel-0.1.9.tar.gz.

File metadata

  • Download URL: consmodel-0.1.9.tar.gz
  • Upload date:
  • Size: 19.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.18

File hashes

Hashes for consmodel-0.1.9.tar.gz
Algorithm Hash digest
SHA256 0caab40d5acb3325d8ace45fcaf70b05122466f969f36884e9567dbadcbe0327
MD5 d59bb3958436193e9fdc966056fa9102
BLAKE2b-256 bd57a200b704807526dd9967ee54d2390f467dd2636981b666aa4d58aa19a346

See more details on using hashes here.

File details

Details for the file consmodel-0.1.9-py3-none-any.whl.

File metadata

  • Download URL: consmodel-0.1.9-py3-none-any.whl
  • Upload date:
  • Size: 21.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.18

File hashes

Hashes for consmodel-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 9d7d110b3d39589cab68b1b77d888b4dec0b9d54eb388e2a55903756bb323c3d
MD5 3dedb0d1ac0190553e02a1b0b1e32cf3
BLAKE2b-256 ca88fb10c70b96e520c31dae76c54be50d942b2708ac7bb8dbfed4276d7a5aa8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page