Skip to main content

A general toolkit for human-object interaction detection

Project description

ConsNet

DOI arXiv PyPI License

This repository maintains the official implementation of the paper ConsNet: Learning Consistency Graph for Zero‐Shot Human‐Object Interaction Detection by Ye Liu, Junsong Yuan and Chang Wen Chen, which has been accepted by ACM Multimedia 2020.

Installation

The ConsNet package could be installed directly from PyPI or manually from source for different uses. Please refer to the following environmental settings that we use.

Install from PyPI

You may install ConsNet from PyPI and import it in your own project as a Python package. This library implements several useful functionalities including Pair IoU, Pair NMS and unified APIs for HICO-DET dataset.

Simply run the following command to install the latest version of ConsNet.

pip install consnet

For more details about consnet.api, please refer to our documentation.

Install from source

By installing ConsNet from source, you may access the full capabilities of this project, including pooling object features, constructing the consistency graph and benchmarking the ConsNet model.

  1. Clone the repository from GitHub.
git clone https://github.com/yeliudev/ConsNet.git
cd ConsNet
  1. Install full dependencies and the package.
pip install -e .[full]

Getting Started

We pre-extract the visual features of all the humans and objects in the dataset and save them for training as well as testing. These features are also used to construct the consistency graph. Please refer to our paper for more details about feature extraction and data sampling.

Build dataset and construct the consistency graph

  1. Download the checkpoints of object detector and ELMo.
# Object detector checkpoints
wget https://dl.catcatdev.com/consnet/faster_rcnn_r50_fpn_3x_coco-26df6f6b.pth
wget https://dl.catcatdev.com/consnet/faster_rcnn_r50_fpn_20e_hico_det-77b91312.pth

# ELMo options and weights
wget https://dl.catcatdev.com/consnet/elmo_2x4096_512_2048cnn_2xhighway_5.5B_options.json
wget https://dl.catcatdev.com/consnet/elmo_2x4096_512_2048cnn_2xhighway_5.5B_weights.hdf5
  1. Download HICO-DET dataset and prepare the files in the following structure.
ConsNet
├── configs
├── consnet
├── tools
├── checkpoints
│   ├── faster_rcnn_r50_fpn_3x_coco-26df6f6b.pth
│   ├── faster_rcnn_r50_fpn_20e_hico_det-77b91312.pth
│   ├── elmo_2x4096_512_2048cnn_2xhighway_5.5B_options.json
│   └── elmo_2x4096_512_2048cnn_2xhighway_5.5B_weights.hdf5
├── data
│   └── hico_20160224_det
│       ├── anno_bbox.mat
│       └── images
│           ├── train2015
│           └── test2015
├── README.md
├── setup.py
└── ···
  1. Convert the annotations to COCO format. The results will be saved in data/hico_det/annotations.
python tools/convert_anno.py
  1. Build dataset and construct the consistency graph. The results will be saved in data/hico_det.
python tools/build_dataset.py --checkpoint <path-to-checkpoint>

Train a model

Run the following command to train a model using specified configs.

python tools/launch.py --config <path-to-config>

Test a model and evaluate results

Run the following command to test a model and evaluate results.

python tools/launch.py --config <path-to-config> --checkpoint <path-to-checkpoint> --eval

Customization

Thanks to the modulized implementation based on NNCore, this project is highly customizable with a number of replaceable modules. You may play with the hyperparameters in configs or construct your own HOI detection pipeline by replacing the dataset, detector, embedder, etc. Please check the documentation of NNCore for more details about customizing the engine and modules.

Citation

If you find this project useful for your research, please kindly cite our paper.

@inproceedings{liu2020consnet,
  title={ConsNet: Learning Consistency Graph for Zero-Shot Human-Object Interaction Detection},
  author={Liu, Ye and Yuan, Junsong and Chen, Chang Wen},
  booktitle={Proceedings of the 28th ACM International Conference on Multimedia},
  pages={4235--4243},
  year={2020}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

consnet-1.2.0.tar.gz (36.3 kB view details)

Uploaded Source

File details

Details for the file consnet-1.2.0.tar.gz.

File metadata

  • Download URL: consnet-1.2.0.tar.gz
  • Upload date:
  • Size: 36.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for consnet-1.2.0.tar.gz
Algorithm Hash digest
SHA256 f116ff28d1834d8a77a53b8d06fdc8ab3dfe37cf44c4a75ecc1a67337497cafd
MD5 567187ccaeb7d1407f0f3792eef3ff34
BLAKE2b-256 27ab46bd3b2936c52792330b288d08d3d3432bb5ba3d92ce2c6cbe8f4387c675

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page