Skip to main content

Contextual string manipulation

Project description

Abstract

This package provides contex.rules, an interface which enables a very declarative form of string manipulation, where you can manipulate a string “in one go” in sophisticated ways.

This library also provides two related abstractions, StringContext and MatchContext, which can be used for a more stateful manipulation of strings. I recommend using contex.rules as I think that makes for more readable code. Nevertheless, those abstractions are well documented and might usefully serve as building blocks. Indeed, contex.rules is implemented on top of them.

The problem with our interfaces for string manipulation

My motivation for creating this package was that I was assigned a task in which it was necessary to change strings such as '1_Photo032-2008.jpg' into '1_Photo031-2008.jpg'. All the numbers could vary between filenames, and it seemed like I always had to do something inelegant to accomplish this task. Maybe it was to match the various parts and stich them back together:

>>> match = re.fullmatch('(\d+)_Photo(\d+)-(\d+)\.jpg', '1_Photo032-2008.jpg')
>>> '{}_Photo{}-{}.jpg'.format(match.group(1), '{:0>3}'.format(int(match.group(2))-1), match.group(3))
'1_Photo031-2008.jpg'

Or using re.sub with non-consuming regex groups to match the correct area of the string:

>>> re.sub('(\d+)(?=-\d+\.jpg)', lambda m: '{:0>3}'.format(int(m.group(1))-1), '1_Photo032-2008.jpg')
'1_Photo031-2008.jpg'

Shouldn’t this be simpler? Describing that string with a regular expression is simple enough, and I’m only changing one little part of the string, so why do I have to fiddle around with indices, and why do I have to sacrifice readability? Most importantly, why do I have to experience this aesthetic pain deep in my heart?

First attempt: stateful manipulation

My first idea was that our abstractions aren’t fit for this sort of problem. Strings are flat, they have no sense of context, and if you pull out a substring then it requires special effort to stich it back together. The solution? Just keep track of the before and the after:

>>> view = contex.match('1_Photo032-2008.jpg', '\d+_Photo(?P<number>\d+)-\d+\.jpg')
>>> view
<MatchContext object; tup=('', '1_Photo032-2008.jpg', '')>
>>> view.group('number')
<MatchContext object; tup=('1_Photo', '032', '-2008.jpg')>
>>> result = view.group('number').replace(lambda n: '{:0>3}'.format(int(n)-1))
>>> result
<MatchContext object; tup=('1_Photo', '031', '-2008.jpg')>
>>> str(result)
'1_Photo031-2008.jpg'
>>>

This way I can move around the “focus point” of the string with methods such as .group, manipulate that space, and when I’m done convert it back to a str. I can even manipulate more than one area of the string:

>>> view = contex.match('1_Photo032-2008.jpg', '\d+_Photo(?P<number>\d+)-(?P<year>\d+)\.jpg')
>>> view.group('number').replace('').group('year').replace(lambda y: y[-2:])
<MatchContext object; tup=('1_Photo-', '08', '.jpg')>
>>>

MatchContext keeps track of where the matched regular expression groups are: Even though I removed the content of the “number” group, MatchContext knows where to find and replace the “year” group. It can also deal with nested regex groups, 0-length matches etc.

Removing the state: Vive la Revolution

The MatchContext abstraction certainly is an improvement for these particular types of problems, but there is one downside to it, and that is that it adds an additional layer of state to ordinary strings: The programmer must remember which part of the string is in “focus”, or, in other words, which state the string is in.

So my next challenge was to eliminate the state. What I found out was that only in rare cases is the state needed or useful, and this lead me to believe that the fundamental problem isn’t really the abstractions we use for representing strings, but rather the interfaces we have for manipulating them. Thus, pardon the pun, enter contex.rules:

>>> contex.rules('\d+_Photo(?P<number>\d+)-(?P<year>\d+)\.jpg', {
...     'number': lambda n: '{:0>3}'.format(int(n) - 1),
...     'year':   lambda y: y[-2:]
... }).apply('1_Photo032-2008.jpg')
'1_Photo031-08.jpg'

Or maybe I want to change the layout of the filename completely:

>>> contex.rules('(\d+)_Photo(?P<number>\d+)-(?P<year>\d+)\.jpg', {
...     'number': lambda n: int(n) - 1,
...     'year':   lambda y: y[-2:]
... }).expand('1_Photo032-2008.jpg', 'Photo_{1}_{number:0>3}-{year}.jpeg')
'Photo_1_031-08.jpeg'

The string manipulation is done in one go. The programmer doesn’t need to remember where the focus point is right now, or specify which order to do the replacements in. This is a much more declarative interface: you tell it what the string looks like, what changes you want made, and it figures out the rest. You don’t need to stich the pieces back together, and can create more readable regular expressions as well because of that.

Nested regex groups are also allowed: the nested one will be replaced first (which will make a difference if the replacement for the outer group is a callable).

More advanced example

Here’s an example using re.search (as opposed to re.fullmatch, which is the default):

>>> contex.rules('(?P<millennium>\d)\d{3}', {
...      'millennium': lambda s: int(s)+1,
...      0:            lambda y: '<span class="year">{}</span>'.format(y)
... }, method=re.search).apply('Current year: 2015')
'Current year: <span class="year">3015</span>'

Notice that the 'millennium' group is replaced before the 0 group.

contex.rules is explained in more detail in its very long docstring.

Doubtful stability

In order to retrieve certain information about the regular expressions to resolve ambiguities related to 0-length matches and so on, I’ve seen it necessary to use sre_parse.parse to parse the regular expressions. This is an “internal support module” or something like that, and the stability of this library becomes doubtful as a result. My judgement was that it would take a lot of time and effort to create my own parser for python regular expressions, and I could easily create some bugs in that parser too.

Conclusion

I hope that the examples of contex.rules I have given are sufficiently intuitive so that any programmer can look at them and infer pretty accurately what they do, because the whole point of this endeavor is to increase readability.

Furthermore, I’d be interested to see if other people can take this idea ^\w{7}

Using Contex

The contex package contains 5 functions:

  • rules(regex, rule_dict, method=re.fullmatch, flags=0) for declarative string manipulation.

  • T(string) for converting a string into a StringContext object.

  • search(string, pattern, flags=0) and

  • match(string, pattern, flags=0) for regex searches (with the same semantic difference as in the re module). They both return a MatchContext object.

  • find(string, substring, right_side=False) for finding a substring, returns a StringContext object.

contex also contains the StringContext and MatchContext classes.

Installing

contex should work in both Python 2.7 and 3.

Install with $ pip install contex. If you want to install for Python 3 you might want to replace pip with pip3, depending on how your system is configured.

Developing

Contex is documented and tested. Run $ nosetests or $ python3 setup.py test to run the tests. The code is hosted at https://notabug.org/Uglemat/Contex

License

The library is licensed under the GNU General Public License 3 or later. This README file is public domain.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

contex-3.tar.gz (14.8 kB view details)

Uploaded Source

Built Distribution

contex-3-py3-none-any.whl (16.6 kB view details)

Uploaded Python 3

File details

Details for the file contex-3.tar.gz.

File metadata

  • Download URL: contex-3.tar.gz
  • Upload date:
  • Size: 14.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for contex-3.tar.gz
Algorithm Hash digest
SHA256 6bb67f8d18471cb41d3f0342e6fa52535fea635f02a809664036929370c7327e
MD5 d6498d03802aa468796ba5af216e6cee
BLAKE2b-256 83524cdb34f1708736241602d38201dae36aef9a2d742c10667ba22fe4a3ef28

See more details on using hashes here.

File details

Details for the file contex-3-py3-none-any.whl.

File metadata

File hashes

Hashes for contex-3-py3-none-any.whl
Algorithm Hash digest
SHA256 c29714593ce15e190e686ea2863fbd1d74fb81937034390db4b12aa282e5e272
MD5 80d118116ad80ff76c5987cafa84efca
BLAKE2b-256 1bd04ea78c8d28dac696f2f8eaab10e337f097a6c22afde2c60faed7d58acb76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page