Continuation Methods for Deep Neural Networks.
Project description
continuation-jax : Continuaion Framework for lambda
Continuation methods of Deep Neural Networks Tags: optimization, deep-learning, homotopy, bifurcation-analysis, continuation
Install using pip:
pip install continuation-jax
Import
import cjax
Math operations on Pytrees
>>> import cjax
>>> from cjax.utils import math_trees
>>> math_trees.pytree_element_mul([2,3,5], 2)
[4, 6, 10]
>>> math_trees.pytree_sub([2,3,5], [1,1,1])
[DeviceArray(1, dtype=int32), DeviceArray(2, dtype=int32), DeviceArray(4, dtype=int32)]
>>> math_trees.pytree_zeros_like({'a':12, 'b':45, 'c':[1,1]})
{'a': 0, 'b': 0, 'c': [0, 0]}
Examples:
- Examples: https://github.com/harsh306/continuation-jax/tree/main/examples
- Sample Runner: https://github.com/harsh306/continuation-jax/blob/main/model_simple_classifier/run.py
"""
Main file to run contination on the user defined problem. Examples can be found in the examples/ directory.
Continuation is topological procedure to train a neural network. This module tracks all
the critical points or fixed points and dumps them to output file provided in hparams.json file.
Typical usage example:
continuation = ContinuationCreator(
problem=problem, hparams=hparams
).get_continuation_method()
continuation.run()
"""
from cjax.continuation.creator.continuation_creator import ContinuationCreator
from examples.model_simple_classifier.model_classifier import ModelContClassifier
from cjax.utils.abstract_problem import ProblemWraper
import json
from jax.config import config
from datetime import datetime
import mlflow
from cjax.utils.visualizer import pick_array, bif_plot
config.update("jax_debug_nans", True)
# TODO: use **kwargs to reduce params
if __name__ == "__main__":
problem = ModelContClassifier()
problem = ProblemWraper(problem)
with open(problem.HPARAMS_PATH, "r") as hfile:
hparams = json.load(hfile)
mlflow.set_tracking_uri(hparams['meta']["mlflow_uri"])
mlflow.set_experiment(hparams['meta']["name"])
with mlflow.start_run(run_name=hparams['meta']["method"]+"-"+hparams["meta"]["optimizer"]) as run:
mlflow.log_dict(hparams, artifact_file="hparams/hparams.json")
mlflow.log_text("", artifact_file="output/_touch.txt")
artifact_uri = mlflow.get_artifact_uri("output/")
hparams["meta"]["output_dir"] = artifact_uri
print(f"URI: {artifact_uri}")
start_time = datetime.now()
if hparams["n_perturbs"] > 1:
for perturb in range(hparams["n_perturbs"]):
print(f"Running perturb {perturb}")
continuation = ContinuationCreator(
problem=problem, hparams=hparams, key=perturb
).get_continuation_method()
continuation.run()
else:
continuation = ContinuationCreator(
problem=problem, hparams=hparams
).get_continuation_method()
continuation.run()
end_time = datetime.now()
print(f"Duration: {end_time-start_time}")
figure = bif_plot(hparams["meta"]["output_dir"], pick_array)
mlflow.log_figure(figure, artifact_file="plots/fig.png")
Note on Hyperparameters
Papers:
Contact:
harshnpathak@gmail.com
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
continuation_jax-0.0.3.tar.gz
(48.6 kB
view hashes)
Built Distribution
Close
Hashes for continuation_jax-0.0.3-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 464a13c74c10defa14eec974dc98c108f206becc86b83cacd727935222a1a48d |
|
MD5 | 297e81293a6d61c852abd9e495a95a42 |
|
BLAKE2b-256 | 4e704c70cad0edd660afe178587dc8078070909c099af8f52d01789a49808609 |