Skip to main content

Numerical continuation of nonlinear equilibrium equations

Project description

contique

Numeric continuation of nonlinear equilibrium equations

PyPI version shields.io PyPI pyversions Made with love in Graz Code style: black

Fig. 1 Archimedean spiral equation solved with contique

Theory of contique's numeric continuation

A solution curve for (n) equilibrium equations fun in terms of (n) unknowns x and a load-proportionality-factor lpf should be found by numeric continuation from an initial equilibrium state fun(x0, lpf0) = 0. Contique's numeric continuation method is best classified as a

  • component-based continuation with an adaptive
  • magnitude-based control-component switching.

Extended equilibrium equations

The lpf value is appended to the unknows x which gives the so-called extended unknowns y = [x, lpf]. One additional control equation is added to the equilibrium equations to ensure (n+1) equations in terms of (n+1) extended unknowns (see next section). This reduces the solution to a point on the initial solution curve.

Control Equation

The control equation is defined as follows: First, a needle-vector with dimension (n+1) is created and filled with zeros needle = 0. For a given initial signed control component j the needle is positioned at needle[|j|] = 1. The maximum allowed values per component are calculated as ymax = y0 + np.sign(j) dymax. The control equation is finally formulated as f(y) = needle.T (y - ymax).

Solution technique

The numeric solution process is divided into three main parts:

  • Step
    • Cycle
      • Iteration (...of a Newton-Rhapson root method)

As the name implies, a Step tries to find the extended unknowns for the next step forward of the equilibrium state. For each Cycle, the initial control component has to be evaluated first (see comment below). The additional control equation is evaluated with this initial control component. The generated extended equilibrium equations in terms of the extended unknows are now solved with the help of a root method (Newton-Rhapson Iterations). The solution of the root method dy is further normalized as dy/dymax and the final control component is evaluated as j = |j| sign((dy/dymax)[|j|]) with |j| = argmax(|dy/dymax|). If the control component changed, another Cycle is performed with the initial control component being now the final control component of the last cycle. This Cycle-loop is repeated until the control component does not change anymore.

A note on the pre-evaluation of the initial control component of a Step: This is performed by the linear solution of the extended equilibrium equations. It is equal to the result of the first Iteration of the Newton-Rhapson root method.

Example

A given set of equilibrium equations in terms of x and lpf (a.k.a. load-proportionality-factor) should be solved by numeric continuation of a given initial solution.

Function definition

def fun(x, lpf, a, b):
    return np.array([-a * np.sin(x[0]) + x[1]**2 + lpf, 
                     -b * np.cos(x[1]) * x[1]    + lpf])

with its initial solution

x0 = np.zeros(2)
lpf0 = 0.0

and function parameters

a = 1
b = 1

Run contique.solve and plot equilibrium states

Res = contique.solve(
    fun=fun,
    x0=x0,
    args=(a, b),
    lpf0=lpf0,
    dxmax=0.1,
    dlpfmax=0.1,
    maxsteps=75,
    maxcycles=4,
    maxiter=20,
    tol=1e-8,
    overshoot=1.05
)

For each step a summary is printed out per cycle. This contains an information about the control component at the beginning and the end of a cycle as well as the norm of the residuals along with needed Newton-Rhapson iterations per cycle. As an example the ouput of some interesting steps 31-33 and 38-40 are shown below. The last column contains messages about the solution. On the one hand, in step 32, cycle 1 the control component changed from +1 to -2, but the relative overshoot on the final control component -2 was inside the tolerated range of overshoot=1.05. Therefore the solver proceeds with step 33 without re-cycling step 32. On the other hand, in step 39, cycle 1 the control component changed from -2 to -1 and this time the overshoot on the final control component -1 was outside the tolerated range. A new cycle 2 is performed for step 39 with the new control component -1.

|Step,C.| Control Comp. | Norm (Iter.#) | Message     |
|-------|---------------|---------------|-------------|

(...)

|  31,1 |   +1  =>   +1 | 7.6e-10 ( 3#) |             |
|  32,1 |   +1  =>   -2 | 1.7e-14 ( 4#) |tol.Overshoot|
|  33,1 |   -2  =>   -2 | 4.8e-12 ( 3#) |             |

 (...)
 
|  38,1 |   -2  =>   -2 | 9.2e-12 ( 3#) |             |
|  39,1 |   -2  =>   -1 | 1.9e-13 ( 3#) | => re-Cycle |
|     2 |   -1  =>   -1 | 2.3e-13 ( 4#) |             |
|  40,1 |   -1  =>   -1 | 7.9e-09 ( 3#) |             |

(...)

Next, we have to assemble the results

X = np.array([res.x for res in Res])

and plot the solution curve.

import matplotlib.pyplot as plt

plt.plot(X[:, 0], X[:, 1], "C0.-")
plt.xlabel('$x_1$')
plt.ylabel('$x_2$')
plt.plot([0],[0],'C0o',lw=3)
plt.arrow(X[-2,0],X[-2,1],X[-1,0]-X[-2,0],X[-1,1]-X[-2,1],
          head_width=0.075, head_length=0.15, fc='C0', ec='C0')
plt.gca().set_aspect('equal')

Fig. 2 Solution states of equilibrium equations solved with contique

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

contique-0.1.13.tar.gz (26.0 kB view details)

Uploaded Source

Built Distribution

contique-0.1.13-py3-none-any.whl (26.9 kB view details)

Uploaded Python 3

File details

Details for the file contique-0.1.13.tar.gz.

File metadata

  • Download URL: contique-0.1.13.tar.gz
  • Upload date:
  • Size: 26.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for contique-0.1.13.tar.gz
Algorithm Hash digest
SHA256 ac249a164c68e19815ccafcc51824ec440df62e3e53ec6289bc2e4684c821fbe
MD5 13808d424a603eebc494b98ed9cb5a80
BLAKE2b-256 6bf2a681abca92f7772d7c940ac631586f7917e8d4a281c076faa77e0db95f02

See more details on using hashes here.

File details

Details for the file contique-0.1.13-py3-none-any.whl.

File metadata

  • Download URL: contique-0.1.13-py3-none-any.whl
  • Upload date:
  • Size: 26.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for contique-0.1.13-py3-none-any.whl
Algorithm Hash digest
SHA256 654dd7a2937e929ec473f1f6da389ee2b79c27a6f4704180d3436e042a7fbef9
MD5 0a12ce296f41d505f9f3e4aa43b7ce06
BLAKE2b-256 c003ae679c2aced2e88d2ddb5ec43ec73486c77ea67e46beebefcdf1457d35b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page