Utilities for preprocessing images for controlnet
Project description
ControlNet auxiliary models
This is a PyPi installable package of lllyasviel's ControlNet Annotators
The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to the 🤗 Hub.
All credit & copyright goes to https://github.com/lllyasviel .
Install
pip install controlnet-aux==0.0.3
Usage
from PIL import Image
import requests
from io import BytesIO
from controlnet_aux import HEDdetector, MidasDetector, MLSDdetector, OpenposeDetector, PidiNetDetector, NormalBaeDetector, LineartDetector, LineartAnimeDetector, CannyDetector, ContentShuffleDetector, ZoeDetector, MediapipeFaceDetector
# load image
url = "https://huggingface.co/lllyasviel/sd-controlnet-openpose/resolve/main/images/pose.png"
response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB").resize((512, 512))
# load checkpoints
hed = HEDdetector.from_pretrained("lllyasviel/Annotators")
midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
mlsd = MLSDdetector.from_pretrained("lllyasviel/Annotators")
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
pidi = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
normal_bae = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
lineart = LineartDetector.from_pretrained("lllyasviel/Annotators")
lineart_anime = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
# instantiate
canny = CannyDetector()
content = ContentShuffleDetector()
face_detector = MediapipeFaceDetector()
# process
processed_image_hed = hed(img)
processed_image_midas = midas(img)
processed_image_mlsd = mlsd(img)
processed_image_open_pose = open_pose(img, hand_and_face=True)
processed_image_pidi = pidi(img, safe=True)
processed_image_normal_bae = normal_bae(img)
processed_image_lineart = lineart(img, coarse=True)
processed_image_lineart_anime = lineart_anime(img)
processed_image_zoe = zoe(img)
processed_image_canny = canny(img)
processed_image_content = content(img)
processed_image_mediapipe_face = face_detector(img)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
controlnet_aux_voltaml-0.3.2.tar.gz
(134.1 kB
view details)
Built Distribution
File details
Details for the file controlnet_aux_voltaml-0.3.2.tar.gz
.
File metadata
- Download URL: controlnet_aux_voltaml-0.3.2.tar.gz
- Upload date:
- Size: 134.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 712f575b14042b7aa74e7b13ad04c4bc1de8bc9f4c0d02b52da4363026bba51b |
|
MD5 | 3ad4565103151a10c32ad1c62e31a9bb |
|
BLAKE2b-256 | f5fe427d7d2ce1ca97f1c4d6c9b54a6fc070d97fb34c769cba8269e661a375ed |
File details
Details for the file controlnet_aux_voltaml-0.3.2-py3-none-any.whl
.
File metadata
- Download URL: controlnet_aux_voltaml-0.3.2-py3-none-any.whl
- Upload date:
- Size: 192.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c382c2a3cc84a0f8ebde5a850df7c285b6a653d63847eec3f469d156abdaf582 |
|
MD5 | 63d5434f54a153b1553b2a3e9b1a3ee2 |
|
BLAKE2b-256 | fc7c62597ce7e907292758b2ff8985fb154e4283607a031d4c95cc98e3d42e20 |