Skip to main content

Utilities for preprocessing images for controlnet

Project description

ControlNet auxiliary models

This is a PyPi installable package of lllyasviel's ControlNet Annotators

The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to the 🤗 Hub.

All credit & copyright goes to https://github.com/lllyasviel .

Install

pip install controlnet-aux==0.0.3

Usage

from PIL import Image
import requests
from io import BytesIO
from controlnet_aux import HEDdetector, MidasDetector, MLSDdetector, OpenposeDetector, PidiNetDetector, NormalBaeDetector, LineartDetector, LineartAnimeDetector, CannyDetector, ContentShuffleDetector, ZoeDetector, MediapipeFaceDetector

# load image
url = "https://huggingface.co/lllyasviel/sd-controlnet-openpose/resolve/main/images/pose.png"

response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB").resize((512, 512))

# load checkpoints
hed = HEDdetector.from_pretrained("lllyasviel/Annotators")
midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
mlsd = MLSDdetector.from_pretrained("lllyasviel/Annotators")
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
pidi = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
normal_bae = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
lineart = LineartDetector.from_pretrained("lllyasviel/Annotators")
lineart_anime = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")

# instantiate
canny = CannyDetector()
content = ContentShuffleDetector()
face_detector = MediapipeFaceDetector()


# process
processed_image_hed = hed(img)
processed_image_midas = midas(img)
processed_image_mlsd = mlsd(img)
processed_image_open_pose = open_pose(img, hand_and_face=True)
processed_image_pidi = pidi(img, safe=True)
processed_image_normal_bae = normal_bae(img)
processed_image_lineart = lineart(img, coarse=True)
processed_image_lineart_anime = lineart_anime(img)
processed_image_zoe = zoe(img)

processed_image_canny = canny(img)
processed_image_content = content(img)
processed_image_mediapipe_face = face_detector(img)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

controlnet_aux_voltaml-0.3.2.tar.gz (134.1 kB view details)

Uploaded Source

Built Distribution

controlnet_aux_voltaml-0.3.2-py3-none-any.whl (192.3 kB view details)

Uploaded Python 3

File details

Details for the file controlnet_aux_voltaml-0.3.2.tar.gz.

File metadata

File hashes

Hashes for controlnet_aux_voltaml-0.3.2.tar.gz
Algorithm Hash digest
SHA256 712f575b14042b7aa74e7b13ad04c4bc1de8bc9f4c0d02b52da4363026bba51b
MD5 3ad4565103151a10c32ad1c62e31a9bb
BLAKE2b-256 f5fe427d7d2ce1ca97f1c4d6c9b54a6fc070d97fb34c769cba8269e661a375ed

See more details on using hashes here.

File details

Details for the file controlnet_aux_voltaml-0.3.2-py3-none-any.whl.

File metadata

File hashes

Hashes for controlnet_aux_voltaml-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c382c2a3cc84a0f8ebde5a850df7c285b6a653d63847eec3f469d156abdaf582
MD5 63d5434f54a153b1553b2a3e9b1a3ee2
BLAKE2b-256 fc7c62597ce7e907292758b2ff8985fb154e4283607a031d4c95cc98e3d42e20

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page