Skip to main content

A Conv-STFT/iSTFT implement based on Torch

Project description

Conv-STFT/iSTFT in PyTorch

Author: Shimin Zhang

The code refers to the following repo:

  1. remove modulation effects
  2. enframe and conv-overlap-add

An STFT/iSTFT written up in PyTorch(py3) using 1D Convolutions. There are two window logic, break and continue.

  • break - a kaldi-like framing method

When the parameters win_len and fft_len are different, padding fft_len-win_len zero points after each frame( len(frame) = win_len ), and the window ( len(window) = win_len ) always wise-multiply with frame before padding.

  • continue - a librosa-like framing method.

When the parameters win_len and fft_len are different, framing the signal using win_len=fft_len, and zero padding on both sides of window ( len(window) = win_len ), which is len(center_pad(window))=fft_len

Installation

Install easily with pip:pip install conv_stft or download this repo, python setup.py install.

Usage

import torch
from conv_stft import STFT
import numpy as np
import librosa 
import matplotlib.pyplot as plt

audio = librosa.load(librosa.util.example_audio_file(), duration=10.0, offset=30)[0]
device = 'cpu'
fft_len = 1024
win_hop = 256
win_len = 1024
window = 'hann'

audio = torch.FloatTensor(audio)
audio = audio.unsqueeze(0)
audio = audio.to(device)

stft = STFT(
    fft_len=fft_len, 
    win_hop=win_hop, 
    win_len=win_len,
    win_type=window,
).to(device)

magnitude, phase = stft.transform(audio, return_type='magphase') # 'magphase' or 'realimag'
output = stft.inverse(magnitude, phase, input_type='magphase') # 'magphase' or 'realimag'
output = output.cpu().data.numpy()[..., :]
audio = audio.cpu().data.numpy()[..., :]
print(np.mean((output - audio) ** 2)) # on order of 1e-15

Output of compare_stft.py:

images/stft.png

Tests

Test it by just cloning this repo and running

pip install -r requirements.txt
python -m pytest .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

conv_stft-0.2.0-py3.6.egg (8.4 kB view details)

Uploaded Source

File details

Details for the file conv_stft-0.2.0-py3.6.egg.

File metadata

  • Download URL: conv_stft-0.2.0-py3.6.egg
  • Upload date:
  • Size: 8.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.10

File hashes

Hashes for conv_stft-0.2.0-py3.6.egg
Algorithm Hash digest
SHA256 f5599f703149581d4b169025f5a9db9b2501d741ac3d75a0068181a24e242865
MD5 303d0c72db4fb0f31b60bc051677dea1
BLAKE2b-256 8a674cf0e02ac64c5916ecc10a6d2f8f00ac622cfac392a6522624e92e90a7d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page