Skip to main content

Python client for the reactive backend-as-a-service Convex.

Project description

Convex

The official Python client for the Convex, the reactive backend-as-a-service for web developers. The Python client can write and read data from a Convex backend with queries and mutations and run actions. If you want to create a new Convex backend to communicate with you can get up and running at docs.convex.dev.

Installation:

pip install convex

Basic usage:

>>> from convex import ConvexClient
>>> client = ConvexClient('https://example-lion-123.convex.cloud')
>>> messages = client.query("listMessages")
>>> from pprint import pprint
>>> pprint(messages)
[{'_creationTime': 1668107495676.2854,
  '_id': Id(table_name='messages', id='c09S884lW4kTLdQMtu2ravf'),
  'author': 'Tom',
  'body': 'Have you tried Convex?'},
 {'_creationTime': 1668107497732.2295,
  '_id': Id(table_name='messages', id='G3m0cCQp65GQDfUjUDnTPEj'),
  'author': 'Sarah',
  'body': "Yeah, it's working pretty well for me."}]
>>> client.mutation("sendMessage")

To find the url of your convex backend, open the deployment you want to work with in the appropriate project in the Convex dashboard and click "Settings" where the Deployment URL should be visible. To find out which queries, mutations, and actions are available check the Functions pane in the Dashboard

To see logs emitted from Convex functions, set the debug mode to True.

>>> client.set_debug(True)

To provide authentication for function execution, call set_auth().

>>> client.set_auth("token-from-authetication-flow")

Join us on Discord to get your questions answered or share what you're doing with Convex. If you're just getting started, see https://docs.convex.dev to see how to quickly spin up a backend that does everything you need in the Convex cloud.

Convex types

Convex backend functions are written in JavaScript, so arguments passed to Convex RPC functions in Python are serialized, sent over the network, and deserialized into JavaScript objects. To learn about Convex's supported types see https://docs.convex.dev/using/types.

In order to call a function that expects a JavaScript type, use the corresponding Python type or any other type that coerces to it. Values returned from Convex will be of the corresponding Python type.

JavaScript Type Python Type Example Other Python Types that Convert
Id Id (see below) Id(tableName, id)
null None None
bigint int 3
number float 3.1
boolean bool True, False
string str 'abc'
ArrayBuffer bytes b'abc' ArrayBuffer
Array list [1, 3.2, "abc"] tuple, collections.abc.Sequence
Set ConvexSet (see below) ConvexSet([1,2]) set, frozenset, collections.abc.Set
Map ConvexMap (see below) ConvexMap([('a', 1), ('b', 2)])
object dict {a: "abc"} collections.abc.Mapping

Id

Id objects represent references to Convex documents. They contain a table_name string specifying a Convex table (tables can be viewed in the dashboard) and a globably unique id string. If you'd like to learn more about the id string's format, see our docs.

ConvexSet

Similar to a Python set, but any Convex values can be items.

ConvexSets are returned from Convex cloud function calls that return JavaScript Sets.

Generally when calling Convex functions from Python, a Python builtin set can be used instead of a ConvexSet. But for representing unusual types like sets containing objects, you'll have to use a ConvexSet:

>>> set([{'a': 1}])
Traceback (most recent call last):
    ...
TypeError: unhashable type: 'dict'
>>> ConvexSet([{'a': 1}])
ConvexSet([{'a': 1}])

ConvexSet instances are immutable so must be fully populated when being constructed. In order to store mutable items, ConvexSets store snapshots of data when it was added.

>>> mutable_dict = {'a': 1}
>>> s = ConvexSet([mutable_dict, 'hello', 1])
>>> mutable_dict in s
True
>>> mutable_dict['b'] = 2
>>> mutable_dict in s
False
>>> s
ConvexSet([{'a': 1}, 'hello', 1])

ConvexSets perform a copy of each inserted item, so they require more memory than Python's builtin sets.

ConvexMap

Similar to a Python map, but any Convex values can be keys.

ConvexMaps are returned from Convex cloud function calls that return JavaScript Maps.

ConvexMaps are useful when calling Convex functions that expect a Map because dictionaries correspond to JavaScript objects, not Maps.

ConvexMap instances are immutable so must be fully populated when being constructed. In order to store mutable items, ConvexMaps store snapshots of data when it was added.

>>> mutable_dict = {'a': 1}
>>> s = ConvexMap([(mutable_dict, 123), ('b', 456)])
>>> mutable_dict in s
True
>>> mutable_dict['b'] = 2
>>> mutable_dict in s
False
>>> s
ConvexMap([({'a': 1}, 123), ('b', 456)])

ConvexMaps perform a copy of each inserted key/value pair, so they require more memory than Python's builtin dictionaries.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

convex-0.1.0.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

convex-0.1.0-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file convex-0.1.0.tar.gz.

File metadata

  • Download URL: convex-0.1.0.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for convex-0.1.0.tar.gz
Algorithm Hash digest
SHA256 e08808d8326f65ca6c77b072dec12f8ff46923d39ee733267f1d7e245fea5550
MD5 7347ccc8a847b33a4040f63572badb06
BLAKE2b-256 dea970a07b2f751d57e35aabc63dd482beda2ab454eb2ab4bece4f62ba008cc9

See more details on using hashes here.

File details

Details for the file convex-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: convex-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for convex-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 dee0b30adfb4e3c64111a5ed576a58e5d8adac44729b67cbf8f67242ee02c2a6
MD5 8fef7683c81ef15bed8483c4c6bd505a
BLAKE2b-256 5b19a6d6de9e334d0c1e762cf6b3396c836fcecd428972437e7548776c2e88db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page