Convolutional Neural Netoworks Training Tools
Project description
convtt
Convolutional Neural Netoworks Training Tools
example of DenseNet training
The example is included in the bin
folder in the package with the file name of convtt_train_densenet.py
.
Here is a code snippet of creating a trainer and train the network given the model and the dataset.
# convtt_train_densenet.py
from convtt.models import densenet
from convtt.train.trainer import *
# initialise trainer
optimiser = build_optimiser(model=model, name='ScheduledSGD', milestones=[10, 20], lr=0.1)
driver = build_driver(model=model, training_epoch=30, batch_size=128, training_data=dataset.train['images'],
training_label=dataset.train['labels'],
validation_data=None, validation_label=None, test_data=dataset.test['images'],
test_label=dataset.test['labels'], optimiser=optimiser)
trainer = build_trainer(optimiser=optimiser, driver=driver)
test_acc = trainer.eval()
print(test_acc)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
convtt-0.0.2.tar.gz
(27.3 kB
view details)
Built Distribution
convtt-0.0.2-py3-none-any.whl
(42.2 kB
view details)
File details
Details for the file convtt-0.0.2.tar.gz
.
File metadata
- Download URL: convtt-0.0.2.tar.gz
- Upload date:
- Size: 27.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b63ae95e85e5762eef0bf9966772afd0cce921e9a7709f819ed51f9e99b76dba |
|
MD5 | 97d519f5a30ff404fb681a6f6477ad3c |
|
BLAKE2b-256 | d163bd457d1f6ba46608445c11bedc271510c6adbe22eba5a4584a69eebe1072 |
File details
Details for the file convtt-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: convtt-0.0.2-py3-none-any.whl
- Upload date:
- Size: 42.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b5c15be545cd9d83930459565172af5e9c60e186f4f70e24ca3869f4702251f0 |
|
MD5 | 7ba969ccc3ea9b52491939e91b73de09 |
|
BLAKE2b-256 | e32a7cd46a0a09c7470bf12b40706ca263e84648a05b023b5a4dc7af8e6d2703 |