Skip to main content

Convolutional Neural Netoworks Training Tools

Project description

convtt

Convolutional Neural Netoworks Training Tools

example of DenseNet training

The example is included in the bin folder in the package with the file name of convtt_train_densenet.py.

Here is a code snippet of creating a trainer and train the network given the model and the dataset.

# convtt_train_densenet.py
from convtt.models import densenet
from convtt.train.trainer import *

# initialise trainer
optimiser = build_optimiser(model=model, name='ScheduledSGD', milestones=[10, 20], lr=0.1)
driver = build_driver(model=model, training_epoch=30, batch_size=128, training_data=dataset.train['images'],
                      training_label=dataset.train['labels'],
                      validation_data=None, validation_label=None, test_data=dataset.test['images'],
                      test_label=dataset.test['labels'], optimiser=optimiser)
trainer = build_trainer(optimiser=optimiser, driver=driver)
test_acc = trainer.eval()
print(test_acc)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

convtt-0.0.2.tar.gz (27.3 kB view hashes)

Uploaded source

Built Distribution

convtt-0.0.2-py3-none-any.whl (42.2 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page