Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

Deep Learning for Simple Folk. Built on Keras

Project Description

Deep Learning for Simple Folk

Built in Python 3 on Keras 2.

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Example

Computing XOR via a target function:

from conx import Network, SGD

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
            optimizer=SGD(lr=0.3, momentum=0.9))
net.train(2000, report_rate=10, accuracy=1)
net.test()

Creates dynamic, rendered visualizations like this:

Install

conx requires Python3, and some other Python modules that are installed automatically with pip.

Note: you may need to use pip3, or admin privileges (eg, sudo), or a user environment.

pip install conx -U

You will need to decide whether to use Theano, TensorFlow, or CNTK. Pick one. See docs.microsoft.com for installing CNTK on Windows or Linux. All platforms can also install either of the others using pip:

pip install theano

or

pip install tensorflow

Use with Jupyter Notebooks

To use the Network.dashboard() and camera functions, you will need to install and enable ipywidgets:

With pip:

pip install ipywidgets
jupyter nbextension enable --py widgetsnbextension

With conda

conda install -c conda-forge ipywidgets

Installing ipywidgets with conda will also enable the extension for you.

Changing Keras Backends

To use a Keras backend other than TensorFlow, edit (or create) ~/.keras/kerson.json, like:

{
    "backend": "theano",
    "image_data_format": "channels_last",
    "epsilon": 1e-07,
    "floatx": "float32"
}

Examples

See the notebooks folder and the documentation for additional examples.

Release History

Release History

This version
History Node

3.1.2

History Node

3.1.1

History Node

3.1.0

History Node

3.0.3

History Node

3.0.2

History Node

3.0.1

History Node

3.0.0

History Node

1.0.3

History Node

1.0.2

History Node

1.0.1

History Node

1.0.0

History Node

0.2.0

History Node

0.1.0

History Node

0.0.4

History Node

0.0.3

History Node

0.0.2

History Node

0.0.1

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
conx-3.1.2-py2.py3-none-any.whl (40.5 kB) Copy SHA256 Checksum SHA256 py2.py3 Wheel Aug 29, 2017
conx-3.1.2.tar.gz (35.6 kB) Copy SHA256 Checksum SHA256 Source Aug 29, 2017

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting