Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

# ConX Neural Networks

## The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/Calysto/conx/master?filepath=binder%2Findex.ipynb) [![CircleCI](https://circleci.com/gh/Calysto/conx/tree/master.svg?style=svg)](https://circleci.com/gh/Calysto/conx/tree/master) [![codecov](https://codecov.io/gh/Calysto/conx/branch/master/graph/badge.svg)](https://codecov.io/gh/Calysto/conx) [![Documentation Status](https://readthedocs.org/projects/conx/badge/?version=latest)](http://conx.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/conx.svg)](https://badge.fury.io/py/conx)

Read the documentation at [conx.readthedocs.io](http://conx.readthedocs.io/)

Ask questions on the mailing list: [conx-users](https://groups.google.com/forum/#!forum/conx-users)

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytics. Built on top of Keras, which can use either [TensorFlow](https://www.tensorflow.org/), [Theano](http://www.deeplearning.net/software/theano/), or [CNTK](https://www.cntk.ai/pythondocs/).

A network can be specified to the constructor by providing sizes. For example, Network("XOR", 2, 5, 1) specifies a network named "XOR" with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer. However, any complex network can be constructed using the `net.connect()` method.

Computing XOR via a target function:

```python
import conx as cx

dataset = [[[0, 0], [0]],
[[0, 1], [1]],
[[1, 0], [1]],
[[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)
```

Creates dynamic, rendered visualizations like this:

<img src="https://raw.githubusercontent.com/Calysto/conx-notebooks/master/network.png" width="500"></img>

## Examples

See [conx-notebooks](https://github.com/Calysto/conx-notebooks/blob/master/00_Index.ipynb) and the [documentation](http://conx.readthedocs.io/en/latest/) for additional examples.

## Installation

See [How To Run Conx](https://github.com/Calysto/conx-notebooks/tree/master/HowToRun#how-to-run-conx)
to see options on running virtual machines, in the cloud, and personal
installation.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
conx-3.7.7-py2.py3-none-any.whl (111.2 kB) Copy SHA256 hash SHA256 Wheel py2.py3
conx-3.7.7.tar.gz (104.1 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page