Skip to main content

Bridge for Stactics AICore

Project description

corebridge

This package provides functions and classes to run wodan style processing functions in the Stactics AICore environment.

Installation

Use

pip install corebridge

to install corebrdige.

How to use

Introduction

Wodan is a proprietary backend service that applies high performance, custom analytical processing to timeseries data in the Whysor data and dashboarding environment.

Each wodan module defines one function that operates as the entry point. The parameter annotations in this function definition are used to format data and retrieve parameters from the originating call to the wodan api. This function is called with data retrieved according to a specification and with additional parameters as annotated.

A simple function might look like:

import numpy as np

def multiply(data:np.ndarray, multiplier:float=1.0):
    return data * multiplier
    

Wodan binds this function to a service endpoint and takes care of fetching data and parameters and converting the result for the caller.

AICore modules

For AICore users define a class, always named CustomModule with a constructor __init__ and a method infer.

This package defines a baseclass to quickly construct a CustomModule class that is able to use a wodan processor function inside the AICore system:

import numpy as np
import corebridge

def multiply(data:np.ndarray, multiplier:float=1.0):
    return data * multiplier

class CustomModule(corebridge.aicorebridge.AICoreModule):
    def __init__(self, save_dir, assets_dir, *args, **kwargs):
        super().__init__(multiply, save_dir, assets_dir, *args, **kwargs)
    

That’s it. Well, you can add parameters to __init__ that can be used as hyperparameters in the web-interface and you could override infer for the same reason. The baseclass takes care of converting call parameters and data to the function specification and, calls the function and converts the result for the caller, similar to the original Wodan service.

Development

NBDev

This library is developed with NBDev - a literate programming toolkit that supports developing code using jupyter notebooks and mix code with documentation.

Literate programming is a methodology - introduced in 1984 by Donald Knuth - that combines a programming language with a documentation language. In this approach, a program is explained in a human language (such as English) alongside code snippets. The literate source file is then processed by a preprocessor to produce both source code and formatted documentation.

This paradigm enhances program robustness, portability, and maintainability, making it a valuable tool in scientific computing and data science[^1]

Quarto

Documentation is prepared from the notebook with Quarto. Quarto too combines code with documentation but it does not extract source code into modules like nbdev.

Installation

Quarto

Quarto uses Pandoc and, for pdf format, LaTeX. These must be available on your system.

Install Quarto as you see fit, there is a VSCode extension which handles this.

NBDev

NBDev is available as PyPi package and is installed with

pip install nbdev

or if you are using conda

conda install -c fastai -y nbdev

If so desired you can let NBDev install Quarto with

nbdev_install_quarto

But this ask for the system admin password.

Local editing & testing

Setup a virtual environment, activate it and install the development package and dependencies with, on linux

    pip install -e ‘.[dev]’

or on Windows

    pip install -e .[dev]

Jupyter

The above pip install should also install jupyter but to use it the kernel needs to be installed with:

    python -m ipykernel install --user --name=corebridge.venv

nbdev cycle

  • edit
  • nbdev_prepare

The latter performs - nbdev_export - nbdev_test - nbdev_clean - nbdev_readme

Then commit and to upload to Pypi with nbdev_pypi

[^1]: Wikipedia on ‘Literate Programming’

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

corebridge-0.3.4.tar.gz (23.2 kB view details)

Uploaded Source

Built Distribution

corebridge-0.3.4-py3-none-any.whl (22.1 kB view details)

Uploaded Python 3

File details

Details for the file corebridge-0.3.4.tar.gz.

File metadata

  • Download URL: corebridge-0.3.4.tar.gz
  • Upload date:
  • Size: 23.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for corebridge-0.3.4.tar.gz
Algorithm Hash digest
SHA256 c78f1e91022a6d5cd89160a7798db918a0e817bf4c1a25708854aced1da1889a
MD5 8fbad29c8bf3d413824201d3f4b74d94
BLAKE2b-256 9ee55fc5af39aa374d3c445a83530dd3677203e104c14dd120c453ae536b9102

See more details on using hashes here.

File details

Details for the file corebridge-0.3.4-py3-none-any.whl.

File metadata

  • Download URL: corebridge-0.3.4-py3-none-any.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for corebridge-0.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 48bc8b6dcf969890f48f5f181d832ebcb04e0e570b699a35c9ea44f2d7d24474
MD5 aaaaf78e8f22057fdf59c03e97824bf9
BLAKE2b-256 4f90bdb1fb34409d26a31c5aa1b2c95e570c549d0ba51efcab84a270bf02e78c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page