Skip to main content

A Stanford Core NLP wrapper

Project description

# A Python wrapper for the Java Stanford Core NLP tools
---------------------------

This is a fork of Dustin Smith's [stanford-corenlp-python](https://github.com/dasmith/stanford-corenlp-python), a Python interface to [Stanford CoreNLP](http://nlp.stanford.edu/software/corenlp.shtml). It can either use as a python package, or run as a JSON-RPC server.

## Updates from the original wrapper
* Supports Stanford CoreNLP v3.x.x (compatible with recent versions)
* Fixed many bugs & improved performance
* Adjusted parameters not to timeout in high load
* Using jsonrpclib for stability and performance
* Batch parser for long text which supports sentiment analysis
* Python 3 compatibility (thanks to Valentin Lorentz)
* [Packaging](https://pypi.python.org/pypi/corenlp-python)

## Requirements
* [pexpect](http://www.noah.org/wiki/pexpect)
* [jsonrpclib](https://github.com/joshmarshall/jsonrpclib) (optionally)

## Download and Usage

To use this program you must [download](http://nlp.stanford.edu/software/corenlp.shtml#Download) and unpack the zip file containing Stanford's CoreNLP package. By default, `corenlp.py` looks for the Stanford Core NLP folder as a subdirectory of where the script is being run.


In other words:

sudo pip install pexpect unidecode jsonrpclib # jsonrpclib is optional
git clone https://bitbucket.org/torotoki/corenlp-python.git
cd corenlp-python
# assuming the version 3.4.1 of Stanford CoreNLP
wget http://nlp.stanford.edu/software/stanford-corenlp-full-2014-08-27.zip
unzip stanford-corenlp-full-2014-08-27.zip

Then, to launch a server:

python corenlp/corenlp.py

Optionally, you can specify a host or port:

python corenlp/corenlp.py -H 0.0.0.0 -p 3456

That will run a public JSON-RPC server on port 3456.
And you can specify Stanford CoreNLP directory:

python corenlp/corenlp.py -S stanford-corenlp-full-2014-08-27/


Assuming you are running on port 8080 and CoreNLP directory is `stanford-corenlp-full-2014-08-27/` in current directory, this wrapper supports recently version around of 3.4.1 which has same output format.

The code in `client.py` shows an example parse:

import jsonrpclib
from simplejson import loads
server = jsonrpclib.Server("http://localhost:8080")

result = loads(server.parse("Hello world. It is so beautiful"))
print "Result", result

That returns a dictionary containing the keys `sentences` and (when applicable) `corefs`. The key `sentences` contains a list of dictionaries for each sentence, which contain `parsetree`, `text`, `tuples` containing the dependencies, and `words`, containing information about parts of speech, NER, etc:

{u'sentences': [{u'parsetree': u'(ROOT (S (VP (NP (INTJ (UH Hello)) (NP (NN world)))) (. !)))',
u'text': u'Hello world!',
u'tuples': [[u'dep', u'world', u'Hello'],
[u'root', u'ROOT', u'world']],
u'words': [[u'Hello',
{u'CharacterOffsetBegin': u'0',
u'CharacterOffsetEnd': u'5',
u'Lemma': u'hello',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'UH'}],
[u'world',
{u'CharacterOffsetBegin': u'6',
u'CharacterOffsetEnd': u'11',
u'Lemma': u'world',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'NN'}],
[u'!',
{u'CharacterOffsetBegin': u'11',
u'CharacterOffsetEnd': u'12',
u'Lemma': u'!',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'.'}]]},
{u'parsetree': u'(ROOT (S (NP (PRP It)) (VP (VBZ is) (ADJP (RB so) (JJ beautiful))) (. .)))',
u'text': u'It is so beautiful.',
u'tuples': [[u'nsubj', u'beautiful', u'It'],
[u'cop', u'beautiful', u'is'],
[u'advmod', u'beautiful', u'so'],
[u'root', u'ROOT', u'beautiful']],
u'words': [[u'It',
{u'CharacterOffsetBegin': u'14',
u'CharacterOffsetEnd': u'16',
u'Lemma': u'it',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'PRP'}],
[u'is',
{u'CharacterOffsetBegin': u'17',
u'CharacterOffsetEnd': u'19',
u'Lemma': u'be',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'VBZ'}],
[u'so',
{u'CharacterOffsetBegin': u'20',
u'CharacterOffsetEnd': u'22',
u'Lemma': u'so',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'RB'}],
[u'beautiful',
{u'CharacterOffsetBegin': u'23',
u'CharacterOffsetEnd': u'32',
u'Lemma': u'beautiful',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'JJ'}],
[u'.',
{u'CharacterOffsetBegin': u'32',
u'CharacterOffsetEnd': u'33',
u'Lemma': u'.',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'.'}]]}],
u'coref': [[[[u'It', 1, 0, 0, 1], [u'Hello world', 0, 1, 0, 2]]]]}

Not to use JSON-RPC, load the module instead:

from corenlp import StanfordCoreNLP
corenlp_dir = "stanford-corenlp-full-2014-08-27/"
corenlp = StanfordCoreNLP(corenlp_dir) # wait a few minutes...
corenlp.raw_parse("Parse it")

If you need to parse long texts (more than 30-50 sentences), you must use a `batch_parse` function. It reads text files from input directory and returns a generator object of dictionaries parsed each file results:

from corenlp import batch_parse
corenlp_dir = "stanford-corenlp-full-2014-08-27/"
raw_text_directory = "sample_raw_text/"
parsed = batch_parse(raw_text_directory, corenlp_dir) # It returns a generator object
print parsed #=> [{'coref': ..., 'sentences': ..., 'file_name': 'new_sample.txt'}]

The function uses XML output feature of Stanford CoreNLP, and you can take all information by `raw_output` option. If true, CoreNLP's XML is returned as a dictionary without converting the format.

parsed = batch_parse(raw_text_directory, corenlp_dir, raw_output=True)

(Note: The function requires xmltodict now, you should install it by `sudo pip install xmltodict`)


### Note

* JSON-RPC server [halts on large text](https://bitbucket.org/torotoki/corenlp-python/issue/7/server-halts-on-large-text). it maybe because of restriction of stdout, you should use the batch parser or [an other wrapper](https://github.com/brendano/stanford_corenlp_pywrapper).

* JSON-RPC server doesn't support sentiment analysis tools because original CoreNLP tools don't output sentiment results to stdout yet (batch parser's output includes sentiment results retrieved from the original CoreNLP tools's XML output)

## License

corenlp-python is licensed under the GNU General Public License (v2 or later). Note that this is the /full/ GPL, which allows many free uses, but not its use in distributed proprietary software.

## Developer
* Hiroyoshi Komatsu [hiroyoshi.komat@gmail.com]
* Johannes Castner [jac2130@columbia.edu]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

corenlp-python-3.4.1-1.tar.gz (22.2 kB view details)

Uploaded Source

File details

Details for the file corenlp-python-3.4.1-1.tar.gz.

File metadata

File hashes

Hashes for corenlp-python-3.4.1-1.tar.gz
Algorithm Hash digest
SHA256 d1e1aa8ecb4ed3e99af32c75ab203275e1bef19aae5ab98c7bdb72f9835c037e
MD5 1e5c7483f2e2a9d4870dd8de3ef994f1
BLAKE2b-256 49ae70dac020f59aa0ac6c3b9dd2994c4f3473a37683d92ec6ab7b00caeb9d7c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page