A Stanford Core NLP wrapper
Project description
# A Python wrapper for the Java Stanford Core NLP tools
---------------------------
This is a fork of Dustin Smith's [stanford-corenlp-python](https://github.com/dasmith/stanford-corenlp-python), a Python interface to [Stanford CoreNLP](http://nlp.stanford.edu/software/corenlp.shtml). It can either use as python package, or run as a JSON-RPC server.
## Updates from the original wrapper
* Update to Stanford CoreNLP v3.3.0
* Fix many bugs & improve performance
* Using jsonrpclib for stability and performance
* Can edit constants as an argument such as Stanford Core NLP directory
* Adjust parameters not to timeout in high load
* Batch parser for long text added by Johannes Castner [stanford-corenlp-python](https://github.com/jac2130/stanford-corenlp-python)
* Packaging
## Requirements
* [pexpect](http://www.noah.org/wiki/pexpect)
* [unidecode](http://pypi.python.org/pypi/Unidecode)
* [jsonrpclib](https://github.com/joshmarshall/jsonrpclib) (optionally)
## Download and Usage
To use this program you must [download](http://nlp.stanford.edu/software/corenlp.shtml#Download) and unpack the zip file containing Stanford's CoreNLP package. By default, `corenlp.py` looks for the Stanford Core NLP folder as a subdirectory of where the script is being run.
In other words:
sudo pip install pexpect unidecode jsonrpclib # jsonrpclib is optional
git clone https://bitbucket.org/torotoki/corenlp-python.git
cd corenlp-python
wget http://nlp.stanford.edu/software/stanford-corenlp-full-2013-11-12.zip
unzip stanford-corenlp-full-2013-11-12.zip
Then, to launch a server:
python corenlp/corenlp.py
Optionally, you can specify a host or port:
python corenlp/corenlp.py -H 0.0.0.0 -p 3456
That will run a public JSON-RPC server on port 3456.
And you can specify Stanford CoreNLP directory:
python corenlp/corenlp.py -S stanford-corenlp-full-2013-11-12/
Assuming you are running on port 8080 and CoreNLP directory is `stanford-corenlp-full-2013-11-12/` in current directory, the code in `client.py` shows an example parse:
import jsonrpclib
from simplejson import loads
server = jsonrpclib.Server("http://localhost:8080")
result = loads(server.parse("Hello world. It is so beautiful"))
print "Result", result
That returns a dictionary containing the keys `sentences` and (when applicable) `corefs`. The key `sentences` contains a list of dictionaries for each sentence, which contain `parsetree`, `text`, `tuples` containing the dependencies, and `words`, containing information about parts of speech, NER, etc:
{u'sentences': [{u'parsetree': u'(ROOT (S (VP (NP (INTJ (UH Hello)) (NP (NN world)))) (. !)))',
u'text': u'Hello world!',
u'tuples': [[u'dep', u'world', u'Hello'],
[u'root', u'ROOT', u'world']],
u'words': [[u'Hello',
{u'CharacterOffsetBegin': u'0',
u'CharacterOffsetEnd': u'5',
u'Lemma': u'hello',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'UH'}],
[u'world',
{u'CharacterOffsetBegin': u'6',
u'CharacterOffsetEnd': u'11',
u'Lemma': u'world',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'NN'}],
[u'!',
{u'CharacterOffsetBegin': u'11',
u'CharacterOffsetEnd': u'12',
u'Lemma': u'!',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'.'}]]},
{u'parsetree': u'(ROOT (S (NP (PRP It)) (VP (VBZ is) (ADJP (RB so) (JJ beautiful))) (. .)))',
u'text': u'It is so beautiful.',
u'tuples': [[u'nsubj', u'beautiful', u'It'],
[u'cop', u'beautiful', u'is'],
[u'advmod', u'beautiful', u'so'],
[u'root', u'ROOT', u'beautiful']],
u'words': [[u'It',
{u'CharacterOffsetBegin': u'14',
u'CharacterOffsetEnd': u'16',
u'Lemma': u'it',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'PRP'}],
[u'is',
{u'CharacterOffsetBegin': u'17',
u'CharacterOffsetEnd': u'19',
u'Lemma': u'be',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'VBZ'}],
[u'so',
{u'CharacterOffsetBegin': u'20',
u'CharacterOffsetEnd': u'22',
u'Lemma': u'so',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'RB'}],
[u'beautiful',
{u'CharacterOffsetBegin': u'23',
u'CharacterOffsetEnd': u'32',
u'Lemma': u'beautiful',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'JJ'}],
[u'.',
{u'CharacterOffsetBegin': u'32',
u'CharacterOffsetEnd': u'33',
u'Lemma': u'.',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'.'}]]}],
u'coref': [[[[u'It', 1, 0, 0, 1], [u'Hello world', 0, 1, 0, 2]]]]}
Not to use JSON-RPC, load the module instead:
from corenlp import StanfordCoreNLP
corenlp_dir = "stanford-corenlp-full-2013-06-20/"
corenlp = StanfordCoreNLP(corenlp_dir) # wait a few minutes...
corenlp.raw_parse("Parse it")
If you need to parse long texts (more than 30-50 sentences), you must use a `batch_parse` function. It reads text files from input directory and returns a generator object of dictionaries parsed each file results:
from corenlp import batch_parse
corenlp_dir = "stanford-corenlp-full-2013-06-20/"
raw_text_directory = "sample_raw_text/"
parsed = batch_parse(raw_text_directory, corenlp_dir) # It returns a generator object
print parsed #=> [{'coref': ..., 'sentences': ..., 'file_name': 'new_sample.txt'}]
The function uses XML output feature of Stanford CoreNLP, and you can take all information by `raw_output` option. If true, CoreNLP's XML is returned as a dictionary without converting the format.
parsed = batch_parse(raw_text_directory, corenlp_dir, raw_output=True)
(note: The function requires xmltodict now, you should install it by `sudo pip install xmltodict`)
### Note
* JSON-RPC server [halts on large text](https://bitbucket.org/torotoki/corenlp-python/issue/7/server-halts-on-large-text). it maybe because of restriction of stdout, you should use the batch parser or [an other wrapper](https://github.com/brendano/stanford_corenlp_pywrapper).
* JSON-RPC server doesn't support sentiment analysis tools because original CoreNLP tools don't output sentiment results to stdout yet (batch parser's output includes sentiment results retrieved from the original CoreNLP tools's XML output)
## Developer
* Hiroyoshi Komatsu [hiroyoshi.komat@gmail.com]
* Johannes Castner [jac2130@columbia.edu]
---------------------------
This is a fork of Dustin Smith's [stanford-corenlp-python](https://github.com/dasmith/stanford-corenlp-python), a Python interface to [Stanford CoreNLP](http://nlp.stanford.edu/software/corenlp.shtml). It can either use as python package, or run as a JSON-RPC server.
## Updates from the original wrapper
* Update to Stanford CoreNLP v3.3.0
* Fix many bugs & improve performance
* Using jsonrpclib for stability and performance
* Can edit constants as an argument such as Stanford Core NLP directory
* Adjust parameters not to timeout in high load
* Batch parser for long text added by Johannes Castner [stanford-corenlp-python](https://github.com/jac2130/stanford-corenlp-python)
* Packaging
## Requirements
* [pexpect](http://www.noah.org/wiki/pexpect)
* [unidecode](http://pypi.python.org/pypi/Unidecode)
* [jsonrpclib](https://github.com/joshmarshall/jsonrpclib) (optionally)
## Download and Usage
To use this program you must [download](http://nlp.stanford.edu/software/corenlp.shtml#Download) and unpack the zip file containing Stanford's CoreNLP package. By default, `corenlp.py` looks for the Stanford Core NLP folder as a subdirectory of where the script is being run.
In other words:
sudo pip install pexpect unidecode jsonrpclib # jsonrpclib is optional
git clone https://bitbucket.org/torotoki/corenlp-python.git
cd corenlp-python
wget http://nlp.stanford.edu/software/stanford-corenlp-full-2013-11-12.zip
unzip stanford-corenlp-full-2013-11-12.zip
Then, to launch a server:
python corenlp/corenlp.py
Optionally, you can specify a host or port:
python corenlp/corenlp.py -H 0.0.0.0 -p 3456
That will run a public JSON-RPC server on port 3456.
And you can specify Stanford CoreNLP directory:
python corenlp/corenlp.py -S stanford-corenlp-full-2013-11-12/
Assuming you are running on port 8080 and CoreNLP directory is `stanford-corenlp-full-2013-11-12/` in current directory, the code in `client.py` shows an example parse:
import jsonrpclib
from simplejson import loads
server = jsonrpclib.Server("http://localhost:8080")
result = loads(server.parse("Hello world. It is so beautiful"))
print "Result", result
That returns a dictionary containing the keys `sentences` and (when applicable) `corefs`. The key `sentences` contains a list of dictionaries for each sentence, which contain `parsetree`, `text`, `tuples` containing the dependencies, and `words`, containing information about parts of speech, NER, etc:
{u'sentences': [{u'parsetree': u'(ROOT (S (VP (NP (INTJ (UH Hello)) (NP (NN world)))) (. !)))',
u'text': u'Hello world!',
u'tuples': [[u'dep', u'world', u'Hello'],
[u'root', u'ROOT', u'world']],
u'words': [[u'Hello',
{u'CharacterOffsetBegin': u'0',
u'CharacterOffsetEnd': u'5',
u'Lemma': u'hello',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'UH'}],
[u'world',
{u'CharacterOffsetBegin': u'6',
u'CharacterOffsetEnd': u'11',
u'Lemma': u'world',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'NN'}],
[u'!',
{u'CharacterOffsetBegin': u'11',
u'CharacterOffsetEnd': u'12',
u'Lemma': u'!',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'.'}]]},
{u'parsetree': u'(ROOT (S (NP (PRP It)) (VP (VBZ is) (ADJP (RB so) (JJ beautiful))) (. .)))',
u'text': u'It is so beautiful.',
u'tuples': [[u'nsubj', u'beautiful', u'It'],
[u'cop', u'beautiful', u'is'],
[u'advmod', u'beautiful', u'so'],
[u'root', u'ROOT', u'beautiful']],
u'words': [[u'It',
{u'CharacterOffsetBegin': u'14',
u'CharacterOffsetEnd': u'16',
u'Lemma': u'it',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'PRP'}],
[u'is',
{u'CharacterOffsetBegin': u'17',
u'CharacterOffsetEnd': u'19',
u'Lemma': u'be',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'VBZ'}],
[u'so',
{u'CharacterOffsetBegin': u'20',
u'CharacterOffsetEnd': u'22',
u'Lemma': u'so',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'RB'}],
[u'beautiful',
{u'CharacterOffsetBegin': u'23',
u'CharacterOffsetEnd': u'32',
u'Lemma': u'beautiful',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'JJ'}],
[u'.',
{u'CharacterOffsetBegin': u'32',
u'CharacterOffsetEnd': u'33',
u'Lemma': u'.',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'.'}]]}],
u'coref': [[[[u'It', 1, 0, 0, 1], [u'Hello world', 0, 1, 0, 2]]]]}
Not to use JSON-RPC, load the module instead:
from corenlp import StanfordCoreNLP
corenlp_dir = "stanford-corenlp-full-2013-06-20/"
corenlp = StanfordCoreNLP(corenlp_dir) # wait a few minutes...
corenlp.raw_parse("Parse it")
If you need to parse long texts (more than 30-50 sentences), you must use a `batch_parse` function. It reads text files from input directory and returns a generator object of dictionaries parsed each file results:
from corenlp import batch_parse
corenlp_dir = "stanford-corenlp-full-2013-06-20/"
raw_text_directory = "sample_raw_text/"
parsed = batch_parse(raw_text_directory, corenlp_dir) # It returns a generator object
print parsed #=> [{'coref': ..., 'sentences': ..., 'file_name': 'new_sample.txt'}]
The function uses XML output feature of Stanford CoreNLP, and you can take all information by `raw_output` option. If true, CoreNLP's XML is returned as a dictionary without converting the format.
parsed = batch_parse(raw_text_directory, corenlp_dir, raw_output=True)
(note: The function requires xmltodict now, you should install it by `sudo pip install xmltodict`)
### Note
* JSON-RPC server [halts on large text](https://bitbucket.org/torotoki/corenlp-python/issue/7/server-halts-on-large-text). it maybe because of restriction of stdout, you should use the batch parser or [an other wrapper](https://github.com/brendano/stanford_corenlp_pywrapper).
* JSON-RPC server doesn't support sentiment analysis tools because original CoreNLP tools don't output sentiment results to stdout yet (batch parser's output includes sentiment results retrieved from the original CoreNLP tools's XML output)
## Developer
* Hiroyoshi Komatsu [hiroyoshi.komat@gmail.com]
* Johannes Castner [jac2130@columbia.edu]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
corenlp-python-3.4.1-0.tar.gz
(22.0 kB
view hashes)