Skip to main content

Add justice, decision, citation, voting, opinion, and segment tables to pre-existing corpus-pax database.

Project description

Corpus-Base

Overview

flowchart TD
pax(corpus-pax)--github api--->sc
subgraph /corpus
  1(justices)
  2(decisions/sc)
  3(decisions/legacy)
end
subgraph local
  1--github api---sc
  2--local copy of corpus---sc
  3--local copy of corpus---sc
  sc(corpus-base)--run setup_base--->db[(sqlite.db)]
end

Concept

In tandem with corpus-pax, corpus-base creates sqlpyd tables related to decisions of the Philippine Supreme Court, thereby adding the following:

  1. Justices
  2. Decisions
    • Citations
    • Votelines
    • Titletags
    • Opinions

Run

>>> from corpus_pax import setup_pax_base
>>> db_name =  # assume target db to be created/recreated is in the present working directory
>>> setup_pax_base('test.db') # takes ~20 to 30 minutes to create/recreate in working dir

Caveats

Flow

  1. Unlike corpus-pax which operates over API calls, corpus-base operates locally.
  2. It implies parsing through a locally downloaded repository corpus to populate tables.
  3. Opinions are limited. Save for 1 or 2 sample situations, the present corpus only includes the Ponencia.

Data

The path location of the downloaded corpus repository is hard-coded since this package is intended to be run locally.

Instructions for downloading and updating the repository are discussed elsewhere.

Now toying with the idea of placing the entire corpus in a bucket like AWS S3 or Cloudflare R2. So that all access can be cloud-based.

Dependency

See citation-report on reason why Python version is limited to 3.11.0 in both:

  1. pyproject.toml; and
  2. github workflow

Repositories

To review the different repositories involved so far:

repository type purpose
lawsql-articles data source used by corpus-pax
corpus-entities data source used by corpus-pax
corpus data source used by corpus-base
corpus-pax sqlite i/o functions to create pax-related tables
corpus-base sqlite i/o functions to create sc-related tables

Related features

Insert records

Can add all pydantic validated records from the local copy of justices to the database.

>>> from corpus_base import Justice
>>> Justice.init_justices_tbl(c) # c = instantiated Connection
<Table justices_tbl (first_name, last_name, suffix, full_name, gender, id, alias, start_term, end_term, chief_date, birth_date, retire_date, inactive_date)>

Clean raw ponente string

Each ponente name stored in decisions_tbl of the database has been made uniform, e.g.:

>>> from corpus_base import RawPonente
>>> RawPonente.clean("REYES , J.B.L, Acting C.J.") # sample name 1
"reyes, j.b.l."
>>> RawPonente.clean("REYES, J, B. L. J.") # sample name 2
"reyes, j.b.l."

We can see most common names in the ponente field and the covered dates, e.g. from 1954 to 1972 (dates found in the decisions), there have been 1053 decisions marked with jbl (as cleaned):

>>> from corpus_base.helpers import most_popular
>>> [i for i in most_popular(c, db)] # excluding per curiams and unidentified cases
[
    ('1994-07-04', '2017-08-09', 'mendoza', 1297), # note multiple personalities named mendoza, hence long range from 1994-2017
    ('1921-10-22', '1992-07-03', 'paras', 1287), # note multiple personalities named paras, hence long range from 1921-1992
    ('2009-03-17', '2021-03-24', 'peralta', 1243),
    ('1998-06-18', '2009-10-30', 'quisumbing', 1187),
    ('1999-06-28', '2011-06-02', 'ynares-santiago', 1184),
    ('1956-04-28', '2008-04-04', 'panganiban', 1102),
    ('1936-11-19', '2009-11-05', 'concepcion', 1058), # note multiple personalities named concepcion, hence long range from 1936-2009
    ('1954-07-30', '1972-08-18', 'reyes, j.b.l.', 1053),
    ('1903-11-21', '1932-03-31', 'johnson', 1043),
    ('1950-11-16', '1999-05-23', 'bautista angelo', 1028), # this looks like bad data
    ('2001-11-20', '2019-10-15', 'carpio', 1011),
    ...
]

Isolate active justices on date

When selecting a ponente or voting members, create a candidate list of justices based on date:

>>> from corpus_base import Justice
>>> Justice.get_active_on_date(c, 'Dec. 1, 1995') # target date
[
    {
        'id': 137,
        'surname': 'panganiban',
        'alias': None,
        'start_term': '1995-10-05', # since start date is greater than target date, record is included
        'inactive_date': '2006-12-06',
        'chief_date': '2005-12-20'
    },
    {
        'id': 136,
        'surname': 'hermosisima',
        'alias': 'hermosisima jr.',
        'start_term': '1995-01-10',
        'inactive_date': '1997-10-18',
        'chief_date': None
    },
]

Designation as chief or associate

Since we already have candidates, we can cleaning desired option to get the id and designation:

>>> from corpus_base import RawPonente
>>> RawPonente.clean('Panganiban, Acting Cj')
'panganiban'
>>> Justice.get_justice_on_date(c, '2005-09-08', 'panganiban')
{
    'id': 137,
    'surname': 'Panganiban',
    'start_term': '1995-10-05',
    'inactive_date': '2006-12-06',
    'chief_date': '2005-12-20',
    'designation': 'J.' # note variance
}

Note that the raw information above contains 'Acting Cj' and thus the designation is only 'J.'

At present we only track 'C.J.' and 'J.' titles.

With a different date, we can get the 'C.J.' designation.:

>>> Justice.get_justice_on_date('2006-03-30', 'panganiban')
{
    'id': 137,
    'surname': 'Panganiban',
    'start_term': '1995-10-05',
    'inactive_date': '2006-12-06',
    'chief_date': '2005-12-20',
    'designation': 'C.J.' # corrected
}

View chief justice dates

>>> from corpus_base import Justice
>>> Justice.view_chiefs(c)
[
    {
        'id': 178,
        'last_name': 'Gesmundo',
        'chief_date': '2021-04-05',
        'max_end_chief_date': None,
        'actual_inactive_as_chief': None,
        'years_as_chief': None
    },
    {
        'id': 162,
        'last_name': 'Peralta',
        'chief_date': '2019-10-23',
        'max_end_chief_date': '2021-04-04',
        'actual_inactive_as_chief': '2021-03-27',
        'years_as_chief': 2
    },
    {
        'id': 163,
        'last_name': 'Bersamin',
        'chief_date': '2018-11-26',
        'max_end_chief_date': '2019-10-22',
        'actual_inactive_as_chief': '2019-10-18',
        'years_as_chief': 1
    },
    {
        'id': 160,
        'last_name': 'Leonardo-De Castro',
        'chief_date': '2018-08-28',
        'max_end_chief_date': '2018-11-25',
        'actual_inactive_as_chief': '2018-10-08',
        'years_as_chief': 0
    }...
]

Helper function to do things incrementally

>>> from corpus_base import init_sc_cases
>>> init_sc_cases(c, test_only=10)

Since there are thousands of cases, can limit the number of downloads via the test_only function attribute.

Segments

Limit input of segments

MIN_LENGTH_CHARS_IN_LINE is the python filtering mechanism that determines what goes into the database. Assuming a minimum of only 10 characters, the number of segment rows can be as many as ~2.9m.

MIN_LENGTH_CHARS_IN_LINE Total Num. of Rows Time to Create from Scratch
10 ~2.9m 1.5 hours
500 ~700k 40 minutes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

corpus_base-0.1.7.tar.gz (23.2 kB view hashes)

Uploaded Source

Built Distribution

corpus_base-0.1.7-py3-none-any.whl (23.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page