Skip to main content

Calculate the confidence intervals of correlation coeficients

Project description

correlation

Calculate confidence intervals for correlation coefficients, including Pearson's R, Kendall's tau, Spearman's rho, and customized correlation measures.

Methodology

Two approaches are offered to calculate the confidence intervals, one parametric approach based on normal approximation, and one non-parametric approach based on bootstrapping.

Parametric Approach

Say r_hat is the correlation we obtained, then with a transformation

z = ln((1+r)/(1-r))/2,

z would approximately follow a normal distribution,
with a mean equals to z(r_hat),
and a variance sigma^2 that equals to 1/(n-3), 0.437/(n-4), (1+r_hat^2/2)/(n-3) for the Pearson's r, Kendall's tau, and Spearman's rho, respectively (read Ref. [1, 2] for more details). n is the array length.

The (1-alpha) CI for r would be

(T(z_lower), T(z_upper))

where T is the inverse of the transformation mentioned earlier

T(x) = (exp(2x) - 1) / (exp(2x) + 1),
z_lower = z - z_(1-alpha/2) sigma,
z_upper = z + z_(1-alpha/2) sigma.

This normal approximation works when the absolute values of the Pearson's r, Kendall's tau, and Spearman's rho are less than 1, 0.8, and 0.95, respectively.

Nonparametric Approach

For the nonparametric approach, we simply adopt a naive bootstrap method.

  • We sample a pair (x_i, y_i) with replacement from the original (paired) samples until we have a sample size that equals to n, and calculate a correlation coefficient from the new samples.
  • Repeat this process for a large number of times (by default we use 5000),
  • then we could obtain the (1-alpha) CI for r by taking the alpha/2 and (1-alpha/2) quantiles of the obtained correlation coefficients.

References

[1] Bonett, Douglas G., and Thomas A. Wright. "Sample size requirements for estimating Pearson, Kendall and Spearman correlations." Psychometrika 65, no. 1 (2000): 23-28.
[2] Bishara, Anthony J., and James B. Hittner. "Confidence intervals for correlations when data are not normal." Behavior research methods 49, no. 1 (2017): 294-309.

Installation:

pip install correlation

or

conda install -c wangxiangwen correlation

Example Usage:

>>> import correlation
>>> a, b = list(range(2000)), list(range(200, 0, -1)) * 10
>>> correlation.corr(a, b, method='spearman_rho')
(-0.0999987624920335,          # correlation coefficient
 -0.14330929583811683,         # lower endpoint of CI
 -0.056305939127336606,        # upper endpoint of CI
 7.446171861744971e-06)        # p-value

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

correlation-1.0.0.tar.gz (4.3 kB view details)

Uploaded Source

Built Distribution

correlation-1.0.0-py3-none-any.whl (8.2 kB view details)

Uploaded Python 3

File details

Details for the file correlation-1.0.0.tar.gz.

File metadata

  • Download URL: correlation-1.0.0.tar.gz
  • Upload date:
  • Size: 4.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.10

File hashes

Hashes for correlation-1.0.0.tar.gz
Algorithm Hash digest
SHA256 325425214435d3e7b74c68ab79b87ca928938b699894c6e0a9e50770c587387d
MD5 6cac8df51c28be50e1cfeb964c5c122c
BLAKE2b-256 30b9f4fcac90062b340c0fa5d015979818f6d9c61d37393163dfbbe369ad4d70

See more details on using hashes here.

File details

Details for the file correlation-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: correlation-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 8.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.10

File hashes

Hashes for correlation-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 39a4aaea61d6d9f8a0ab3fc79597285f52664bc0a2795dcc2dbfcb9c94f0d614
MD5 226db3d2d1900726635445ae332bda8b
BLAKE2b-256 e4c4d283538f7b1f56169b899971c2af70b7b1f5c96d5c7d54135c359128f89f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page